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Abstract

Diffusion models (DMs) have emerged as powerful Artifi-
cial Intelligence Generated Content (AIGC) tools for high-
quality image synthesis. However, achieving effective edge
personalization faces challenges: heterogeneous user prefer-
ences, limited local data, and intensive computational de-
mands on resource-constrained devices. To bridge this gap,
we first highlight the limitations of existing works in com-
munication efficiency and scalability, and then introduce an
edge-assisted collaborative fine-tuning framework, built upon
Low-Rank Adaptation (LoRA) for parameter-efficient lo-
cal tuning. Within a federated learning (FL) framework, we
jointly train user-specific models on edge devices and a global
model on the server, enabling collaborative personalization
while preserving data privacy. The shared global model is
enriched with multiple LoRA adapters and can be employed
in a hybrid inference process to enhance communication ef-
ficiency. To mitigate feature distribution shifts caused by
style diversity, the server performs hierarchical client clus-
tering with intra-cluster aggregation for enhanced personal-
ization and inter-cluster interaction for cross-style alignment.
Beyond improving inference efficiency, our framework also
addresses privacy concerns: transmitting prompts that con-
tain style or label information to a semi-trusted server could
inadvertently expose user data. To mitigate this, we derive
embeddings from user-specified keywords, reducing the risk
of revealing sensitive dataset details. Evaluations show that
our framework achieves accelerated convergence and scalable
multi-user personalization, making it a practical solution for
edge-constrained AIGC services.

1 Introduction

Artificial Intelligence Generated Content (AIGC) models,
capable of multi-modal content generation (e.g., text-to-
image, image-to-image, and text-to-video), have captured
widespread attention due to their capabilities in synthesizing
contextually intelligent content. For instance, state-of-the-
art image synthesis foundation models like DALL-E, Stable
Diffusion Models (SDMs), and GPT-4o0 leverage advanced
architectures to generate high-fidelity images from concise
textual prompts.
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Driven by real-world application demands, these models
are shifting focus from general-purpose tasks (e.g., image
synthesis and style transfer) (Ahn et al. 2024; Frenkel et al.
2024) to client-side personalized content generation, em-
phasizing the need for outputs to adapt to user attributes
(e.g., age or preferences) or to be tailored to specialized
knowledge domains. For instance, when generating a news
poster from an interview video, editors prioritize factual pre-
cision, while social media creators emphasize visual ap-
peal. Textual Inversion (Gal et al. 2022) and DreamBooth
(Ruiz et al. 2023) enable few-shot (3—5 images) adapta-
tion for such scenarios, but their parameter-isolated learn-
ing paradigm—independently optimized per-user embed-
dings—poses a barrier for dynamic edge deployment.

Unlike Generative Adversarial Networks (GANSs), which
generate samples in a single forward pass, Diffusion Mod-
els (DMs) rely on a computationally intensive iterative de-
noising process (typically 100 to 1000 steps). This iterative
nature, coupled with the considerable storage demands of
AIGC models, poses challenges for resource-limited end de-
vices. To address these challenges, in the conventional set-
ting (Fig. 1a), users typically upload raw data and prompts
to cloud or capable edge servers for full inference, which,
however, raises concerns about raw data leakage. With grow-
ing user expectations for low latency and privacy-preserving
generation process, server-client hybrid inference frame-
works are gaining attention in recent research (Du et al.
2023; Xie et al. 2025; Yan et al. 2024; Yang et al. 2025).

Hybrid inference frameworks aim to distribute computa-
tion between the server (for initial processing) and devices
(for local denoising), based on task-specific prompts, as de-
picted in Fig. 1(b-d). However, under a semi-honest server
setting, current hybrid implementations incur (i) a certain
degree of storage redundancy and (i7) potential informa-
tion leakage stemming from user-submitted interaction data
(e.g., hybrid inference queries). In particular, EC-Diff (Xie
et al. 2025) explores cloud-side strategies (Fig. 1b), yet be-
comes storage-intensive when scaled to multi-user cases due
to maintaining one model per user, and further poses data
exposure risks by requiring the upload of plaintext prompts
that may expose user-specific preferences (e.g., diagnostic
terms like ‘dermatofibroma’). FedBip (Chen et al. 2025)
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Figure 1: Four key methods for accelerating the infer-
ence process locally of DMs. Among four mainstream
approaches that depend on cloud-side inference, per-user
model storage, or user-specific model distillation, our pro-
posed “1-to-N Hybrid Inference” integrates multiple LoRAs
into a global DM, enabling parallel multi-user inference via
a shared latent—without requiring raw data upload or ex-
posing sensitive prompts.

also requires sharing domain- and instance-level plaintext
prompts for server inference. Hybrid-SD (Yan et al. 2024)
requires distilling a separate edge model per user (Fig. 1c),
causing costly computation on the cloud.

Building upon this, our work focuses on reducing server-
side storage without sacrificing personalization accuracy
in edge-AIGC systems, as depicted in Fig. 1(d). Specifi-
cally, our framework supports lightweight local fine-tuning
through Low-Rank Adaptation (LoRA) (Hu et al. 2022),
ensuring privacy by uploading only model updates and
privacy-agnostic prompts for collaborative training with-
out exposing raw data. By updating only a small sub-
set of parameters while keeping the main model frozen,
LoRA significantly reduces computational overhead. Feder-
ated Learning (FL) (Chen et al. 2023) enables the collab-
orative training of personalized local models and the con-
struction of a shared global model, which can be further ex-
ploited for hybrid inference across users with similar tasks,
minimizing redundant server-side storage.

Under the semi-trusted server assumption, we leverage
DMs as the generative backbone and propose an FL-based
fine-tuning framework for collaborative edge personaliza-
tion. The key contributions are as follows:

e We first emphasize the emerging trend for personal-
ized content synthesis in edge-AIGC systems, while
discussing the limitations of existing methods. We in-

vestigate two key challenges in (i) the performance
degradation of standard and personalized FL under in-
creasing data heterogeneity and the growing scale of
AIGC model architectures, and (i7) the protection of
user preferences contained in user-submitted informa-
tion such as prompts (Section II).

* We then present our cluster-aware hierarchical feder-
ated aggregation framework for scalable multi-user edge
personalization. It employs intra-cluster aggregation for
users sharing the same style to enhance personalized
feature representation; inter-cluster aggregation is subse-
quently performed to generate mixed-style personalized
content or produce distribution-neutral results to acceler-
ate hybrid inference (Section III).

» Experiments on real-world data confirm that our multi-
style LoRA-enhanced global model shows around 40%
better latent space alignment (best-case 0.6x Fréchet In-
ception Distance (FID) on sketch generation) than the
baseline. It successfully serves multiple devices for par-
allel personalized generation, reducing edge-side compu-
tation while preserving style precision (Section IV).

2 System Overview

While integrating FL into edge-AIGC frameworks offers
promising benefits—particularly in preserving the privacy of
raw data and supporting multi-user coordination—it simul-
taneously poses several technical challenges. In response to
these challenges outlined below, we design a cluster-aware
hierarchical architecture that enables scalable and personal-
ized AIGC deployment across heterogeneous edge devices.

2.1 Problem Formulation

We identify three key design drivers that shape our design:

Design Driver 1 — Dual Heterogeneity: Feature Dis-
tribution & Device Resource Availability. When target-
ing multi-user personalization in FL-based edge-AIGC sys-
tems, heterogeneity extends beyond the traditional label het-
erogeneity assumption in FL: (1) Feature-level heterogene-
ity—even identically labeled inputs can exhibit varying fea-
ture distributions, creating complex non-IID effects. For ex-
ample, data may differ fundamentally in both characteris-
tics (e.g., cartoon stylization for primary school education
vs. photorealism for undergraduate medical education) and
structure (e.g., 2D sequential layouts vs. 3D spatial orga-
nizations). (2) Device-driven heterogeneity. High-capacity
devices prefer to employ higher LoRA ranks (64/128) for
richer parameterization, while resource-limited ones use
lower ranks (4/8/16) to conserve resources. Such hetero-
geneity undermines standard aggregation methods (Wang
et al. 2024); for example, FedAvg fails to align divergent
LoRA parameters without tailored adaptation (Fig. 2).

To mitigate the performance degradation caused by such
heterogeneity, clustering-based approaches can facilitate
more efficient model aggregation by grouping clients with
similar tasks or data style preferences. Our architecture aims
to avoid the limitations of conventional client clustering
methods (Yuan et al. 2025; Tu, Wang, and Hu 2024), which
typically rely on the need for pre-defined k,client-uploaded
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Figure 2: Feature energy (SVD) of LoRAs vs. FedAvg by
layer. A higher value indicates stronger personalized feature
representation. After aggregating LoRA adapters trained
on different styles using FedAvg, the resulting model ex-
hibits significantly weakened personalization, reflecting se-
vere feature dilution across styles.

statistics, or server-side public datasets—practices that in-
troduce privacy risks and scalability challenges in real-world
deployments.

Design Driver 2 — Classic PFL Methods Fail in AIGC.
Personalized FL (PFL) frameworks enhance standard FL by
supporting client-specific personalization, aligning with our
goal. Common PFL approaches (Tan et al. 2022) include
adding a regularization term, performing additional fine-
tuning on each client, or decoupling parameters into glob-
ally shared and client-specific components. While these ap-
proaches have shown success with conventional neural net-
works (e.g., CNNs), they face challenges when applied to
AIGC due to fundamental differences in model complexity
and scale. For example, Phoenix (Stanley Jothiraj and Mash-
hadi 2024) adopts parameter decoupling by assigning the U-
Net’s final decoder block for client-specific adaptation while
keeping the other layers shared in the global model. How-
ever, this design overlooks the critical role of attention lay-
ers in capturing fine-grained features (Frenkel et al. 2024),
limiting its effectiveness for nuanced personalization.

LoRA is employed in our framework to update the
attention-related layers throughout the UNet network, en-
abling efficient learning of user-specific image feature repre-
sentations. Unlike methods that require pinpointing specific
personalized layers, this approach provides greater scalabil-
ity and flexibility.

Design Driver 3 — Privacy Risks in Hybrid-Inference
Requests. During a hybrid inference-based content genera-
tion, local clients inevitably upload their generation requests
to coordinate with the server-side model. However, directly
transmitting plaintext prompts to semi-trusted servers intro-
duces privacy risks. When such requests include explicit
style descriptors or domain-specific category labels (e.g.,
artistic styles or medical terms like “dermatofibroma’), they

Algorithm 1 Cluster-Aware FL for Personalized SDMs
Require: Pre-trained SDM My, clients N, rounds R, Ir n
Ensure: Global LoRA A©,, cluster LoORAs {A©, } X%
Server executes:

1: Initialize A@g

2: forroundr =1,...,Rdo

3: S, < random client subset
for each client i € S,. in parallel do

A©7,z] + ClientUpdate(i, AO; ")

end for
Step 1: Dynamic Clustering by Style
{C1,...,Ck,} < Cluster({z] };es,)
/* Outliers form singleton clusters or merge into nearest cluster */

9:  Step 2: Intra-Cluster Aggregation

AN

10: foreachclusterc=1,...,K, do
11: AO] = Ziecc Z—’C?A@f

where n; = |D;|, n. = Ziecc n;
12:  end for

13:  Step 3: Inter-Cluster Aggregation (Dual-Path)
14:  /* Path 1: Domain-Weighted Fusion */
15 A, =YK a6
161 where fe = - we = o DED;' + (1 — a) - SNT.
J

17:  /* Path 2: Statistically Neutral Model */

. K,
18: A@;,neu = argiilag Zc:l ||A@ - AG’(’:H%
19:  yields AO pey = stack(A@I, FANC L A@%T)
20:  / AOy i cluster-aware; AOy ,,: neutral latent

g,mix*
21: Ay« A i
22:  if converged then
23: break
24:  else
25: send A©], to clients in C,
26:  endif
27: end for

ClientUpdate(i, AO):
28: D; = {(p, x)} /I Prompt-image pairs
29: AO; arg minA@ E(p,:r)NDi [£SD(MO(p§ A@), l‘)]
30: z; « Mean(CLIP(p) for p € D;)
31: return AO,,z;

may inadvertently reveal user-specific data traits—allowing
adversaries to conduct property inference or semantic leak-
age attacks.

To protect style attributes and user-sensitive labels from
disclosure to semi-trusted servers, our framework incorpo-
rates the textual inversion method(Gal et al. 2022) to encode
explicit descriptors (e.g., “sketch”) into private latent tokens
(e.g., “(user-s)”). A detailed overview of privacy considera-
tions is provided in Section 3.1.

2.2 System Overview

Following the discussion of key challenges, Fig. 3 illus-
trates our main system model, which consists of two compo-
nents: (1) a cluster-aware hierarchical FL training process
(Fig. 3a), and (2) an optimized hybrid inference pipeline
(Fig. 3b). During training, as shown in Algorithm 1, each
client first fine-tunes its LORA parameters on its own dataset



D; = {(p, z)} to minimize the noise prediction loss:
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where € is the ground -truth noise, €y is the predicted noise,
x4 is the noisy latent at the timestep t. AO” represents the
LoRA parameters optimized at FL round r, and the resulting
client-specific parameters are denoted by A©}.

After local fine-tuning (lines 28-31 in Algorithm 1), the
Training Edge Server (TES) performs clustering based on
user preferences z; (e.g., sketch-style vs. cartoon-style) (line
8), followed by intra-cluster aggregation for enhanced per-
sonalization (line 11), and inter-cluster aggregation to pro-
duce both cluster-based personalized models A©F™ (line
15) and a shared global model A©F" (line 18). The over-
all global loss function combines two objectives:

Ly(Bage, {LORAL}) = Aneu Lo (Buge)
Kr
+ Amix D Wk Ly (Bage, LORA),

k=1
where LL0R4 (6,4, ) is the neutralization loss that encourages
the shared global model with neutral LORA A©y ,, to gen-
erate intermediate latent representations Xpig following a
standard Gaussian distribution A (0, I). Specifically:

LERA Oage) = Eoxpiam Mo (+36000,20 5 1) [PKL (Xmia [N (0, 1))]
where Dgp denotes the Kullback-Leibler divergence. This
ensures that A©, ., produces statistically neutral outputs
that can serve as a common foundation for all style-specific
adaptations. The second term £X. measures the reconstruc-
tion quality when combining the global model with each
cluster-specific LoRA.

During hybrid inference on the Inference Edge Server
(IES), the shared global LoORA A©F" works with the pre-
trained base model Mgp to perform early denoising steps,
producing an intermediate latent X;q with neutral fea-
ture characteristics. Subsequently, cluster-aware personal-
ized LoRAs A@;‘i" can optionally be applied in later de-
noising steps to enhance user-specific style generation.

AO] = arg mln LE(p,2)~D;

3 Proposed approach
3.1 Overview: Privacy Considerations

To limit sensitive data exposure, server roles are decoupled
into TES (training) and IES (inference), with no collusion
assumed. TES handles LoRA aggregation while being re-
stricted from accessing the full base model. IES retains the
pre-trained base model and the generalized global LoRA,
which produces only style-neutral intermediate representa-
tions, preventing leakage of user-specific features. To fur-
ther protect privacy, client-submitted data (e.g., domain key-
words or prompts) is transmitted as encoded representations.
For instance, a style term skefch is obfuscated as <user-s>,
rendering it semantically opaque to the servers.

3.2 Cluster-aware Hierarchical Co-training

The co-training framework focuses on: (a) client-side LoRA
fine-tuning (Step 2 in Fig. 3), and (b) server-side cluster-
aware hierarchical LoRA aggregations (Step 4-6). Three se-
quential phases are executed:

1. Initialization and Local LoRA Training.

To enable end clients with limited computation and data
to collaboratively personalize DMs without exposing private
data, in this phase, only the added LoRA parameters on each
client’s local dataset D; = (p,x) are updated. The LoRA
modules are added to the attention layers of both the text
encoder and U-Net components in the pre-trained diffusion
model My—where self-attention layers capture stylistic nu-
ances while cross-attention layers align outputs with text
prompts. Specifically, as shown in Algorithm 1 (lines 1-4),
each client ¢ locally fine-tunes M by updating only the
LoRA A®j], while keeping all base model weights frozen.
Each client possesses a private dataset D; = (p, z, d), where
p is the text prompt, x is the corresponding image, and d de-
notes the domain or visual style label (e.g., sketch, cartoon),
later used for clustering in the server stage.

The local fine-tuning objective is defined as:

A®; = argmin Eq, ;)~p, [Lsp(Mo(p; AOT), 2)].

Here, Lsp represents the standard denoising loss on the
LoRA-augmented model My:

2
Lsp = ]Eew./\/'(o,[)ﬂf H€ - 69(.13t7t,p)||2:| ’

where x; = Jayx + /1 — age. After the r-th local fine-
tuning, each client transmits only the LoRA updates A
and a style embedding z;. The z; is obtained by averaging
CLIP-encoded vectors of a subset of its local images: (z; =
ﬁ ijeDi CLIP(x;)) (Radford et al. 2021). This vector

summarizes the visual style and enables effective clustering
at the server while preserving privacy.
2. Style-based Cluster & Intra-cluster Aggregation.
Let Z = {z1,29,...,znN} denote all client embeddings,
and the server computes pairwise cosine similarities s;; =

to construct K clusters {Cy,...,Cx} by mini-

Z; Zj
llzill2]z; ]2
mizing S5, Yice, 1zi — pill3, where g, is the mean
embedding of cluster C;, (Kim, Kwon, and Ye 2022). For
clarity, the domain representations are visualized in plain-
text format in Fig. 3. Within each cluster Cy, LoRA updates
{AO; | i € Cy} are aggregated through weighted averaging
to enhance domain-specific consistency:

N M A T C RS oL

1€C, 1€Ce

This operation enhances style-specific feature expressive-
ness through intra-cluster consistency, while suppressing
redundancy from overlapping parameters. It should be
noted that directly extending weighted averaging to inter-
cluster fusion (3, w.AO7) may lead to feature cancel-
lation caused by multi-style interference (see Fig. 2). To
mitigate inconsistencies caused by rank heterogeneity in
LoRA modules, we recommend a dynamic median-aligned
padding strategy—the median rank across clients within
cluster Cy, is computed as yedian = median{r; | ¢ € Cx},
and components exceeding 7pegian are truncated.
3. Inter-cluster Aggregation.
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Figure 3: A federated framework for fine-tuning personalized diffusion models across edge devices. Clients are grouped
by domain (e.g., image style) based on their dataset characteristics. After cluster-level aggregation, cluster-aware models are
sent back to each group, while a shared global LoRA is delivered to the IES for hybrid inference.

Following the intra-cluster aggregation phase, which
yields cluster-specific LoRAs {AO, }C 1» we proceed to
inter-cluster aggregation to facilitate cross-domain knowl-
edge transfer. Through adjustable coefficients, this phase
produces two distinct outcomes: (1) cluster-aware person-
alized models A©, iy capturing local preferences and (2)
a shared, generalized global LoORA module A© ¢, produc-
ing style-neutral representations. Clients with limited train-
ing data can thereby benefit from diverse, privacy-preserving
style patterns without performing local training.

1) Cluster-specific Model (Style-Weighted Fusion): For
clients lacking training data for certain styles, we intro-
duce an optional inter-cluster aggregation module to en-
able privacy-preserving and efficient style transfer. In-
spired by Flora (Wang et al. 2024), we preserve style-
specific features via stacking and use two complemen-
tary metrics to determine each style’s contribution: se-
mantic distance and feature importance. Let dy, = ||zx —
z4||2 denote the semantic distance from cluster £’s style
embedding to the global style centroid z,. Let 7, =

(A©y,) denote the normalized trace of clus-

ter k’s LoRA singular values, which quantifies the aver-

age feature importance (or expressiveness) captured by
cluster k’s LoRA parameters. The style-weighted global

LoRA is then formulated as:

K,

K,
w
A(ag,mix = § 6kA@k = E EKrk aA@kv
k=1

k=1 2uj=1 Wj

where the weight is computed as: w; = « - i +(1-

«) - 7. Here, a € [0, 1] balances the contribution from
semantic distinctiveness and feature expressiveness.

2) Shared Global Model (Statistical Neutralization):
This path generates a style-neutral LoRA by solving
AByg ney arg minpy g Zf:H |[A© — A©.||3, where
each cluster LoORA A©, is stacked to form the neutral
LoRA AOg neu. ABOgpeu is then inserted into the pre-
trained SDM and optimized using the neutralization loss
LERA(f,44) to ensure statistically neutral latent gener-
ation. Following Flora (Wang et al. 2024), this stacking
approach effectively preserves multiple personalized fea-
tures across diverse domains.

3.3 Hybrid Inference Architecture

In this phase, the IES handles multi-user requests via a hy-
brid inference strategy that leverages the global LoRAs pro-
duced by Algorithm 1. This process can be formalized as:

1. Neutral Latent Generation (Server-side): Each
user uploads a generic prompt pge, derived from
non-sensitive  or  anonymized keywords (e.g.,
Art_painting —  (user-a)), to the server. Inter-
pretable by MspisharedLora @nd local LoRA modules
but opaque to third parties, this prompt activates the
corresponding LoRA subspace, allowing the server to
generate a style-neutral intermediate latent:

Xmid = SDdenOise(pgena Msp, A@geu’ t=1: Tearly)7

where SDgenoise denotes the denoising process, and ey
specifies the number of initial denoising steps performed
on the server side.



/0L1r57W'7style Ours_w/o style ~ Other
(32 epoch) (120 epochs)  objects

Cartoon
Style

Gz

Sl

= ¢ C
Q\:{ Higher visual Similarity

SDM-v-1-5 Analog-v7

.

FedAvg Fed_GeoMed

Other
objects

Nf

» Lower visual similarity ]

Figure 4: Comparison on PACS dataset: (i) Without fine-tuning, two pre-trained SDMs (SDM-v1-5 and Analog-v7) fail to
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PACS’s styles, which with “A {label} with <user-s>style” and “A {label} with S/A/C style” as input prompts separately. (iv)

Our method achieves better alignment on unseen objects (“flower

2. Local Generation (Client-side): The client resumes de-
noising from xpiq using its cluster-aware personalized
model A©¢™ and the prompt pgen. The final latent repre-
sentation is obtained as:

Xfinal = SDdenoise (p: Xmid» MSD? Aegﬁxﬂf = T'early4’1 : T)

where 7' denotes the total number of denoising steps.

4 Experimental Evaluation
4.1 Models, Datasets and Experiment Settings.

We evaluate two SDMs (SDM-vl.5 and Analog-v7) as
our AIGC base models to assess their fine-tuning po-
tential. The PACS dataset (7 classes across 4 domains:
Photo/Art/Cartoon/Sketch) is used for personalized image
synthesis. To assess federated fine-tuning performance, we
simplify the whole process with rank-16 LoRA for all
clients, bypassing intra-cluster and directly performing the
inter-cluster aggregation across three LoRAs; the FL simu-
lation follows a zero-shot setting, where each unique style is
assigned to a single user (with 100 images each). This setup
ensures lightweight adaptation, updating only 1.18M param-
eters in the text encoder and 3.19M in the U-Net per client.
All experiments are conducted on NVIDIA GeForce RTX
4090 GPUs (24GB each) running CUDA 12.6.

4.2 Baselines and Experiment Results.

Style Alignment in Personalized Image Generation: As
shown in Fig. 4, when given the same input prompts—*“A
{label} with {sketch/art/cartoon } style”—the two pre-
trained DMs (e.g., SDM-V-1-5 and Analog-v7) show no-
ticeable style deviations from the PACS. This discrepancy

» o«

, “plane”) that are absent in training data.

is primarily attributed to the models’ varying interpreta-
tions of certain terms, particularly the semantic ambiguity
of “sketch”, but our models can effectively correct these de-
viations, generating images that not only better match the
PACS style but also preserve diversity. We also compare
two classic FL aggregation strategies—FedAvg reconstructs
the global model via layer-wise weighted accumulation of
client updates; FedGeoMed applies geometric medians at
each layer to enhance robustness against outlier gradients.
As reflected in Fig. 2, due to the inconsistency in the direc-
tion of feature representations among local LoRAs, impor-
tant personalized features tend to cancel out during aggrega-
tion, leading to suboptimal results.

In comparison, our fine-tuned variants (Ours_w_style and
Ours_w/o_style, both using stack-based aggregation) pro-
duce more stylistically aligned results than the four base-
lines. Specifically, Ours_w/o_style replaces explicit style
terms (e.g., “sketch”) with implicit descriptors (e.g., <user-
specific>) in the prompts. This setting allows for more
privacy-aware control over style, but requires longer fine-
tuning epochs. As shown in Fig. 4, with a batch size of 2 and
100 local images, it takes 120 epochs to converge—nearly
four times longer than Ours_w_style (32 epochs).

Cluster-based Aggregation for Personalized Outputs:
Fig. 5 compares hybrid inference results between the pre-
trained SDM (Baseline) and our LoRA-enhanced SDM
(Ours) based on generating intermediate latent representa-
tions on the server. With a total of 50 inference steps, the
server conducts early-stage inference on 20% (10 steps) or
30% (15 steps) of the steps; under these split ratios, our out-
puts better align with the PACS test data distribution, partic-
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Figure 5: Hybrid inference comparison: LoRA-enhanced SDM vs. pre-trained SDM. Given a generic prompt (i.e., “A
dog”), the server performs early-stage inference for 10 (0.2) or 15 (0.3) of the 50 total steps. Based on the same shared inter-
mediate latent, each client applies its own prompt for downstream generation. Ours preserves both diversity and user-specific
style features, whereas the vanilla pre-trained model exhibits weaker diversity and lacks personalization. As a representative
case, the same result is validated by FID (Fréchet Inception Distance) scores of the sketch style.

ularly in the sketch style.

Quantitative evaluation using Fréchet Inception Distance
(FID) (averaged over 100 images) confirms these observa-
tions, as seen in Fig. 5—lower scores indicate closer statisti-
cal alignment with real images. The mixzLoras € [0.7,1.0]
controls the contribution of the global LoRA to the outputs’
stylization, while the local LoRA scale (0.75-0.95) adjusts
the strength of client-side personalization; higher scale val-
ues indicate stronger personalization effects. Our method
achieves optimal performance (FID=145) at mix Loras=1.0
with local scale=0.95, surpassing the pre-trained baseline
(FID=240) by 40% across all tested mix Loras ranges (0.7-
1.0). This demonstrates that the fine-tuned global model can
enhance output quality compared to relying solely on local-
ized adjustments.

5 Future research directions

To fully realize the potential of FL-powered Edge-AIGC
systems, several critical open problems are considered:

¢ Maintaining Personalization under Dynamic Client
Arrivals. New arrivals call for more adaptive solutions
that do not rely on coarse-grained clustering when ini-
tializing new users. A promising future direction is to
develop redundancy-aware adaptation strategies that de-
termine whether new clients should reuse or align with
existing aggregated LoRAs, or set up new clusters.

* Network-Aware Aggregation for Federated AIGC.
When clients face heterogeneous network conditions and

device constraints, imbalance can introduce aggregation
bias and weaken personalization in the global LoRA
model. Future directions include developing network-
aware aggregation methods that incorporate both the
communication capabilities of clients and the semantic
relevance of their updates.

Adversarial Attacks in Federated Edge-AIGC. The
distributed nature of FL-based training makes it vulner-
able to adversarial behaviors, such as data inversion and
model poisoning by malicious clients through injecting
adversarially crafted data or uploading manipulated mod-
els (e.g., LoRA parameters). Therefore, robust detection
and defense mechanisms are crucial for safeguarding the
integrity of federated AIGC systems.

6 Conclusion

In this work, we presented a federated multi-user fine-
tuning framework for personalized AIGC at the edge. Built
on LoRA-enhanced diffusion models, our approach enables
scalable and privacy-preserving content generation across
heterogeneous devices and user preferences. By integrating
FL with adaptive multi-LoRA in a cluster-aware hierarchical
framework, we mitigate redundancy, heterogeneity, and in-
efficiency in complex AIGC networks. Experimental results
confirmed that our method achieves superior personalized
inference accuracy and system scalability, highlighting its
effectiveness for real-world edge AIGC applications.
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