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Efficient Multi-User Offloading of Personalized
Diffusion Models: A DRL-Convex Hybrid Solution
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Abstract—Generative diffusion models like Stable Diffusion are
at the forefront of the thriving field of generative models today,
celebrated for their robust training methodologies and high-quality
photorealistic generation capabilities. These models excel in pro-
ducing rich content, establishing them as essential tools in the
industry. Building on this foundation, the field has seen the rise of
personalized content synthesis as a particularly exciting application.
However, the large model sizes and iterative nature of inference
make it difficult to deploy personalized diffusion models broadly on
local devices with heterogeneous computational power. To address
this, we propose a novel framework for efficient multi-user offload-
ing of personalized diffusion models. This framework accommo-
dates a variable number of users, each with different computational
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capabilities, and adapts to the fluctuating computational resources
available on edge servers. To enhance computational efficiency
and alleviate the storage burden on edge servers, we propose a
tailored multi-user hybrid inference approach. This method splits
the inference process for each user into two phases, with an opti-
mizable split point. Initially, a cluster-wide model processes low-
level semantic information for each user’s prompt using batching
techniques. Subsequently, users employ their personalized models
to refine these details during the later phase of inference. Given
the constraints on edge server computational resources and users’
preferences for low latency and high accuracy, we model the joint
optimization of each user’s offloading request handling and split
point as an extension of the Generalized Quadratic Assignment
Problem (GQAP). Our objective is to maximize a comprehensive
metric that balances both latency and accuracy across all users. To
solve this NP-hard problem, we transform the GQAP into an adap-
tive decision sequence, model it as a Markov decision process, and
develop a hybrid solution combining deep reinforcement learning
with convex optimization techniques. Simulation results validate
the effectiveness of our framework, demonstrating superior opti-
mality and low complexity compared to traditional methods.

Index Terms—Diffusion model, edge offloading, generalized
quadratic assignment problem, DRL, AIGC service, hybrid
inference.

I. INTRODUCTION

THE remarkable progress of generative models has ushered
in a new era of artificial intelligence technology. Notable

advancements include ChatGPT in natural language process-
ing, demonstrating capabilities on par with human experts in a
wide range of applications. Similarly, Stable Diffusion Models
(SDMs) [1], developed based on Denoising Diffusion Prob-
abilistic Models [2], have gained comparable prominence in
computer vision. The impressive generative capabilities and the
training robustness of SDMs have established them as a founda-
tional tool in numerous applications, such as super-resolution,
image editing, text-to-image and inpainting, etc. [3]. They are
also pivotal in empowering industries such as telecommunica-
tions [4] and medical [5] sectors. Among these advanced appli-
cations, personalized content synthesis (PCS) stands out as a par-
ticularly important and eagerly anticipated branch of research.

The customizable features of PCS enable users to generate
images tailored to objects, styles, faces, and other high-level
semantic details. For example, this capability allows users to
place themselves in virtual scenes like historic landmarks or
future cities, or recreate rare pet behaviors, such as a cat leaping
gracefully. As a result, PCS has garnered significant public
interest, prompting a surge in research and development efforts
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within this area. Since the release of DreamBooth and Textual
Inversion in August 2022, the field has rapidly expanded, with
over 100 methods developed in a short time. [6]. However, espe-
cially within the PCS field, rising privacy concerns have become
particularly pronounced due to the personal nature of the content
being generated. Additionally, the increasing number of users
has put excessive pressure on cloud resources. Consequently,
there is a strong demand for on-device deployment of SDMs to
address these issues. Yet, these models often come with large
model sizes and substantial computational requirements. In this
sense, the slow and iterative sampling process during inference
limits the widespread deployment of personalized SDMs on
local devices, as they must adapt to the diverse computational
capabilities of user devices.

Recently, research aimed at enhancing inference speed in
diffusion models has been organized into three main categories.
The first focuses on sampling step reduction, which is best
known for its implementation in Denoising diffusion implicit
models (DDIMs) [7]. The second approach is based on model
compression [8], [9], [10]. The third category achieves hybrid
inference through edge offloading [11], [12]. (More details of
these techniques are discussed in Section II.) Among these
approaches, the DDIM has been integrated into SDMs. However,
generating high-quality and detail-rich images still requires
hundreds of denoising steps. In recent work [13], ByteDance
Inc. combines the aforementioned model compression and both
hybrid inference methods for SDMs. The inference process
begins with a smaller model on the user side, while the latter de-
noising steps, which require additional detail, are performed by
a large-scale model on the cloud or edge servers. The simulation
results confirm the promising gains brought by this composite
hybrid inference approach. However, unlike shared foundation
models, personalized diffusion models are unique to each user.
Extending this to a practical multi-user scenario, replicating each
personalized model on the edge server for independent inference
would place immense storage and computational burdens on
the servers used for offloading. This approach deviates from
the trend toward on-device applications and could potentially
exceed the capabilities of even cloud infrastructure.

To overcome this dilemma and facilitate the widespread adop-
tion of personalized SDMs, this work focuses on a balanced
solution for multi-user personalized SDMs. Our goal extends
beyond optimizing specific inference algorithms. Instead, we
intend to seamlessly integrate inference algorithm optimizations
with real-world resource management, relying on the typical
edge-device collaborative network framework. Specifically, we
propose a novel framework for efficient multi-user offloading
of personalized diffusion models. This framework addresses
scenarios with a variable number of users, diverse user com-
putational capabilities, and fluctuating edge server resources.
To minimize redundancy and alleviate storage burdens, we em-
ploy a cluster-wide model that captures common personalized
features of the cluster’s users through fine-tuning, serving as
a shared offloading model. Furthermore, we enhance compu-
tational efficiency by enabling batch processing of offloading
tasks for multiple users. Nevertheless, these improvements also
present two new challenges.

� The hybrid inference approach, which combines the of-
floaded inference by the cluster-wide model with local
inference by the personalized model. While offloading
reduces inference latency, it also introduces a degree of per-
sonalization loss. Thus, a trade-off between latency reduc-
tion and accuracy of personalized feature representation
must be carefully considered when optimizing offloading
steps.

� Existing approaches often overlook the server’s parallel
inference capabilities and assume that total latency is pro-
portional to the number of tasks. Unlike these methods, the
batching technique presents a unique challenge. As batch
size increases, it leads to longer inference latency for each
denoising step, thereby exacerbating the interdependence
between individual user offloading decisions and overall
system performance.

To address the aforementioned challenges, we innovatively
develop a comprehensive and precise optimization metric. Using
this metric as a guide, we formulate the efficient multi-user
offloading for personalized diffusion models as an extension
of the Generalized Quadratic Assignment Problem (GQAP).
Additionally, we design a low-complexity solution specifically
for this extended version of GQAP. The key contributions of our
approach are summarized as follows:
� We propose an efficient multi-user hybrid inference man-

ner. In this framework, a cluster-wide SDMs, which is
trained to capture common features of personalized de-
mands among users within the cluster, is located at the edge
server. Meanwhile, the personalized model of each user is
deployed at the local individually. The inference process
for each user is split into two phases with an optimizable
split point. For users participating in offloading, the initial
phase of inference is performed on the cluster-wide model
using batching techniques. This approach synchronously
generates low-level semantic and contour information tai-
lored to each user’s prompt. The intermediate results are
subsequently returned to each user, who then applies a
personalized SDM to add finer details in the later stages
of the generation process.

� We propose a tailored metric that balances latency and
accuracy of personalized feature, interconnected through a
weighting parameter. This parameter captures each user’s
preference between the two factors and can be customized
individually to reflect their specific requirements. Based on
rigorous mathematical analysis, we provide the range for
this parameter along with insights into the corresponding
effects. To quantify accuracy in PCS, we define a metric
called Personalized Accuracy Index (PAI), which jointly
considers the traditional accuracy, measured by the CLIP,
and the variation in final generated images for different
users given the same prompt, assessed by LPIPS. We train
a cluster-wide model and multiple personalized models
using DreamBooth and establish a unified mathematical
model describing the relationship between PAI and the split
point based on empirical simulations.

� We formulate the joint optimization of offloading request
handling and each user’s individual split point as an
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TABLE I
SUMMARY OF MAIN NOTATIONS

extended GQAP, aiming to maximize overall performance
using the tailored metric as a guiding principle. To meet
the real-time decision-making requirements, we are, to
the best of our knowledge, the first to apply Deep Rein-
forcement Learning (DRL) to solve GQAP, proposing a
DRL-convex hybrid solution. Specifically, we introduce a
novel paradigm that transforms GQAP into a sequential
decision-making process and maps it into a Markov De-
cision Process (MDP) model. Meanwhile, we determine
the optimal split point for each user based on convex
optimization theory and integrate it into the environment
of the MDP. We compare this algorithm with classical
algorithms for solving GQAP, such as Branch & Bound
and heuristic algorithms, demonstrating its optimality and
low complexity, O(n), regarding the number of users.

The rest of this paper is organized as follows. In Section II, we
review research in hybrid inference for SDMs and the existing
solutions relevant to GQAP. Then, in Section III, we introduce
the system overview, and relevant models. Then, we present the
problem formulation in Section IV and the DRL-convex hybrid
solution is described in Section V. An experimental evaluation
is presented in Section VI, followed by the conclusion and future
directions in Section VII. For the sake of convenience, the main
notations in this work have been summarized in Table I.

II. RELATED WORKS

A. Inference Latency Reduction in Diffusion Models

As discussed in Section I, research aimed at overcoming
these challenges can be organized into three main directions.
The first direction, Sampling Step Reduction, is exemplified by
Denoising Diffusion Implicit Models (DDIMs) [7], which repa-
rameterize the diffusion process into a non-Markovian chain.
This enables sampling in 50 - 200 steps, or even fewer, instead
of the typical 1,000, but at the cost of reduced high-frequency
detail generation and increased output variability. Efforts to
balance speed with fidelity include adaptive step scheduling
and noise-aware sampling, but challenges remain. The second
direction, Model Compression, includes architectural redesign,
pruning, and quantization to streamline diffusion architectures
while preserving semantic coherence. Architectural redesigns,
such as replacing U-Net backbones with vision transform-
ers in U-ViT [14], achieve significant parameter reductions
while maintaining competitive FID scores. Structured pruning
strategies [9] remove redundant elements to reduce compu-
tational demands, and quantization techniques demonstrated
by Q-Diffusion [10] employ precision adjustments to main-
tain performance. Despite advancements, compressed models
struggle with complex compositions and rare concepts, often
requiring task-specific adjustments to avoid semantic drift. The
third category, hybrid inference, includes (1) combining models
of different sizes to offset quality degradation from exclusive
reliance on compressed models [11], and (2) leveraging edge
server’s greater computing power to offload part of the denoising
steps, enabling collaborative inference and reducing overall
latency [12]. A detailed discussion on hybrid inference will
follow in Section II-B.

B. Hybrid Inference for Diffusion Models

Since the remarkable success of diffusion models in
generative tasks, research on latency optimization for inference
processes has gained momentum. As discussed in Section I,
this research initially focused on reducing denoising steps and
compressing the model. However, both approaches inevitably
lead to some degree of performance degradation; the greater
the reduction in inference latency, the more noticeable the
performance loss. Beyond these two approaches, hybrid
inference has been proposed, offering flexible combinations
with the above methods.

In 2022, NVIDIA Corporation first proposes the eDiff-I
framework, where the inference process is divided into multiple
stages. Each stage corresponds to a distinct model, focusing
on different generative functions to enhance overall inference
performance [15]. Then, the authors in [16] design OMS-DPM,
a predictor-based search algorithm, to determine the optimal
model schedule given a specific generation time budget and a
set of pre-trained models. Recently, in [17], the authors present
a new framework called DDSM, which employs a spectrum
of neural networks whose sizes are adapted according to the
importance of each generative step. In addition to the model’s
size and functionality, the authors in [12] expand the concept
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of hybrid inference to incorporate computational heterogeneity
within the inference process. Here, the inference process is split,
with one part completed by a more powerful edge server and the
latter part handled locally by the user device, connected via a
wireless transmission link to reduce inference latency. Addition-
ally, they propose an interesting idea: users with similar prompts
can share the initial portion of the inference process on the edge
server, reducing the edge server’s computational load. However,
this inevitably comes at the cost of lower image generation
quality. To address this, the authors in [18] further optimize
the split point under this setting. Although the framework’s
effectiveness is applicable when prompts from different users
are highly similar, in practice, user prompts are often diverse.
Therefore, this framework’s use cases are quite limited.

In addition, ByteDance further extends hybrid inference to si-
multaneously incorporate both model heterogeneity and compu-
tational heterogeneity, as introduced in [13]. However, they only
consider the single-user inference scenario and do not address
the inevitable challenges in real-world applications, where cloud
server resources available to users are limited. Consequently,
they do not explore the necessary handling of offloading requests
or the optimization of the split point based on personalized user
requirements under such conditions. Overall, optimization of
diffusion model inference for real-world applications remains
in a very early stage.

C. Generalized Quadratic Assignment Problem

Combinatorial optimization problems (COPs) are widely
present in network resource optimization, including the trav-
eling salesman problem [19], knapsack problem [20], and
multi-armed bandit problem [21], etc. Among them, quadratic
assignment problem (QAP) is considered as one of the
most difficult to solve in combinatorial optimization [22]. In
addition, various variants of this problem, such as Quadratic
Bottleneck Assignment Problem, Biquadratic QAP, quadratic
semi-assignment problem and the relatively new GQAP, have
continuously emerged, attracting significant attention over the
past decades. A common approach is to linearize the quadratic
terms using linearization techniques, enabling the problems
to be solved with general-purpose mixed integer linear pro-
gramming solvers. Two widely used techniques are standard
linearization [23] and the reformulation-linearization technique
(RLT) [24]. Meanwhile, the authors in [25] further integrate
Lagrangean relaxation procedure over RLT, then combine with
the classic Branch & Bound scheme. Nevertheless, the quadratic
form of its objective function makes it challenging to find even
an approximate optimal solution within limited time, especially
when the problem size is slightly larger. To this end, the authors
in [22] propose a heuristic algorithm, a parallel iterated tabu
search algorithm. Although it outperforms traditional integer
linear programming solvers in terms of performance, its high
computational complexity makes it challenging to apply in
real-time optimization scenarios.

Meanwhile, the success of DRL in solving increasingly
complex problems over the past decade has also inspired a wave
of research on using DRL to tackle COPs with low complexity.

Notable achievements have been made in solving problems such
as the TSP, Vehicle Routing Problem, and Maximum Cut [26],
[27], [28]. The basic idea is to transform the optimization of
a high-dimensional variable into a decision sequence, thus
formulating it as an MDP model based on the DRL paradigm.
However, unlike ordering problems such as the TSP, the QAP
problem hardly permits such a transformation. Thus using
DRL to solve QAP has received relatively little attention. To
our knowledge, only two studies have explored this approach.
In [29], the authors discuss the challenges of generalizing
existing frameworks for TSP on QAP. Moreover, in [30]
the authors leverage a novel double pointer network, which
alternates between selecting a location for the next facility and
choosing a facility for the previously selected location. Although
the effectiveness of this paradigm has been demonstrated, it
is limited to standard QAP that requires an equal number of
facilities and locations. Consequently, the algorithm’s applica-
bility is restricted. In summary, a low-complexity algorithm for
addressing the GQAP remains an open research area.

III. SYSTEM MODEL AND PRE-DEPLOYMENT

A. System Overview

In this work, we consider a single-cell scenario with a cluster
of users running the customized on-device applications based
on SDMs, as shown in Fig. 3. Meanwhile, for users within a
cluster, we assume their PCS tasks share similarities, such as
personalized dog object generation, personalized female face
generation, or similar personalized style. Moreover, the devices
of the users, such as desktops, laptops, and smart mobile de-
vices, are characterized by diverse computational power. To
reduce computational latency and facilitate the application pro-
liferation, users can access edge offloading services. However,
user-specific model deployment at the edge leads to consid-
erable storage overhead. To this end, an efficient offloading
manner is considered in this work. Specifically, these customized
on-device applications are assumed to share a cluster-wide
model hosted on the edge server. This model, derived through
cluster-oriented fine-tuning, enables efficient parallel processing
of tasks with batching techniques. A feasible pre-deployment
approach is detailed in Section III-B.

To maximize overall system efficiency and performance, we
adopt a periodic & centralized offloading mechanism. We as-
sume that the offloading strategy is executed at fixed intervals of
durationΔ, each consisting ofK time slots, where each time slot
is indexed by k. Moreover, we denote the set of users sending
requests during Δ as I, with each user indexed by i. A user
i ∈ I can send an offloading request at any time slot k, but must
wait (K − k) time slots to receive the server’s feedback. This
time interval is referred to as round-trip time (RTT), denoted by
�R. Moreover, we denote the number of available GPUs for the
current user set I by G, which may vary over time. We define
that the offloading decisions made by the edge server for user
requests include two options: grant and deny [20]. For the grant
decision, the number of offloaded denoising steps is required to
be identified at the same time. All the decisions for the users in I
are jointly determined by four main factors: 1) the computational
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Fig. 1. Illustration of system overview and pre-deployment approach.

capacity of the users’ devices; 2) the preferences for personalized
accuracy and latency; 3) the time of the request; and 4) the
current available resources at the edge. As with any trade-off,
the degree of inference offloading inversely impacts the extent
of degradation in meeting users’ personalized requirements. In
this sense, these factors are considered to achieve a desired
trade-off between latency and the final personalized accuracy for
all users. The metrics about latency and personalized accuracy
are specified in Section III-D.

Once the offloading strategy is determined, all denoising steps
for users who are denied are performed locally on their devices.
For users who are granted, they first need to transmit their
individual prompts to the edge server. The edge server, based
on the offloading strategy results for each user, performs the
user-specific number of denoising steps at the edge for each
user’s prompt, respectively. The intermediate results are then
fedback to the users to complete the remaining offloading locally.
(The hybrid inference model is detailed in Section III-C.) For
the uplink and downlink transmission involved in the process,
we assume that the spectral efficiency η (or data rate per unit
bandwidth) for user i is fixed, with a given modulation and cod-
ing scheme. Given that the transmission latency is remarkably
lower than the computational latency, we simplify the bandwidth
allocation. We assume that during the transmission process, all
users granted for offloading equally share the system’s reserved
maximum bandwidth Wmax.

B. Pre-Deployment Approach

Subsequently, we introduce a pre-deployment approach for
the considered multi-user scenario as stated in Section III-A. For
illustration purposes, we consider the SDM-based on-device ap-
plications with personalized object generation. This approach,
however, is equally applicable to personalization tasks involving
facial features, style customization, etc., supporting a variety of
emerging diffusion-based applications such as extended reality,
advertising, and remote education.

For example, as shown in Fig. 1, the term “dog” for the
available SDM refers broadly to all breeds and ages of dogs.

In the absence of additional specific adjectives, the generated
image of a dog is random. However, in practice, each user has a
specific and largely consistent preference for the appearance of
a dog. Therefore, users would prefer the term “dog” to directly
generate an image that aligns with their envisioned appearance,
without the need to input repetitive and redundant descriptive
prompts each time. To achieve customized configurations, we
assume the application uses the Dreambooth technique to fine-
tune the downloaded SDM with private images. For example,
the model can be fine-tuned to identify a dog as the user’s
specific pet, such as a golden retriever puppy. Meanwhile, the
cluster-wide model at the edge is fine-tuned using an image
collection representative of a specific user cluster. These images
can be either shared by users or generated based on prompts
provided by them. For example, as illustrated in Fig. 1, in a
cluster focused on various breeds of puppies, the data collec-
tion for fine-tuning consists of a selection of Samoyed and
Golden puppy images shared by users and images generated
by the prompt corgi puppy. Then, the fine-tuned cluster-wide
model can represent a dog’s image as a shared representa-
tion common to different breeds of puppies. A case study
on this, along with the visualization results, are presented in
Section VI.

C. Hybrid Inference Model

Although the SDM consists of three components: Text en-
coder, U-Net, and Variational Autoencoder, the computational
complexity of the U-Net is the most significant, and it repeatedly
participates in the denoising process iterations [31]. In this sense,
we disregard the latency of the Text Encoder and Variational
Autoencoder, assuming that both the inference latency at the
edge and local sides are mainly governed by their own number
of denoising steps. Notably, the latency per denoising step
differs between the edge and local sides, influencing their overall
inference latency.

In contrast to traditional DNNs, such as convolutional neu-
ral networks, fully connected networks, and Transformer vari-
ants, which features a straightforward, single forward pass
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Fig. 2. Illustration of the hybrid inference process with n∗
i optimized individually for each user.

for inference, diffusion models employ an iterative inference
process. Specifically, starting with a noise vector, the model
progressively applies a series of denoising steps, repeatedly
utilizing the same DNN, such as U-Net, to incrementally gen-
erate a high-quality output. The inherently recurrent nature
of the diffusion model’s inference process challenges the ef-
fectiveness of existing partition-based offloading strategies for
DNNs. To address the associated inference latency, this work
proposes a hybrid inference model that partitions the iterative
inference process in the temporal domain, as illustrated in
Fig. 2.

Numerous simulation experiments indicate that the initial de-
noising steps primarily capture common low-level features, such
as contours and blobs, with minimal inclusion of personalized
information. Consequently, as shown in the bottom of Fig. 2,
users can offload the initial denoising steps to a cluster-wide
model, followed by a customized denoising process locally. Let
the total number of denoising steps be denoted by N . Since the
inference process reverses the sequence from the original data
back to pure noise, the denoising steps are indexed in descending
order. Thus, stepN is executed first, and step 1 is executed at last.
Moreover, we assume that the last N̂ denoising steps must be
executed locally to meet users’ personalized requirements. The
value of N̂ is determined experimentally in Section VI. Thereby,
with the split point n∗

i ∈ [N̂ ,N ], the denoising steps from N to
n∗
i + 1 are executed at the edge, and the remaining denoising

steps from n∗
i to 1 are performed locally. For an extreme case,

n∗
i = N indicates that the entire inference process is performed

locally.
Moreover, as shown in the top of Fig. 2, To optimize the of-

floading process at the edge, the batching technique is employed
to harness parallel computing capabilities and reduce memory
access time. Specifically, at intervals of duration Δ, the edge
server assembles the pure noisy data, denoising step indexes, and
prompts of all the granted users, and batches them separately.
Then, the formed three individual batches are fed as three distinct
inputs into the model for parallel and iterative inference. Due to
varying offloading task volumes among different users, some
tasks may complete earlier, resulting in a reduced batch size.

Fig. 3. Illustration of the impact of batch size on latency per denoising step,
based on empirical measurements.

According to the NVIDIA report,1 when utilizing the batching
technique, the function of the computational latency on the batch
size for a specific neural network is observed to be approximately
linear, usually with a large constant term [20]. In this context,
we use L (b) = kb+ h to characterize the computational la-
tency of one denoising step, where b represents the batch size.
Meanwhile, k and h are constant terms whose values depend
on the adopted models of GPUs, which can be determined
experimentally as shown in Fig. 3. Hereinafter, for the sake
of simplicity, we use (ki, hi) and (ke, he) to characterize the
computation power of user i and edge server, respectively. For
the local inference, we can default the value of b to always be 1.
Then, we denote the latency per local denoising step for user i by
Li(1) for short. Furthermore, considering the commonly used
data partitioning approach in parallel inference, we assume that
with G GPUs on the edge server, the inference latency can be
approximately reduced to the latency corresponding to a batch
size of 1/G of the original, that is, L (b) can be further modified
as Le(b,G) ≈ ke(b/G) + he.

D. Quality of Experience Metric

1) End-to-End Latency: The end-to-end (E2E) latency for a
stable diffusion task is measured from the moment the user sends

1https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-
product-literature/t4-inference-print-update-inference-tech-overview-
final.pdf
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the offloading request to the edge server until the final generated
image is obtained. As stated in Section III-A, the edge server
responds to requests in two ways, each leading to a different com-
position of E2E latency. For users whose requests are denied, the
E2E latency is equivalent to the sum of RTT and the latency of
full local inference, expressed asLi = �Ri + �L

i . For users whose
requests are granted, the E2E latency includes two additional
components, which is given by Li = �Ri + �E

i + �T
i + �L

i , where
�E
i denotes the inference latency at the edge, and �T

i represents the
total transmission latency, including both uplink and downlink.
The detailed E2E latency calculations under a given strategy
policy are provided in Section IV.

2) Personalized Accuracy Index: In the context of efficient
diffusion offloading, we introduce a tailored metric called the
Personalized Accuracy Index (PAI), which integrates both per-
sonalization and accuracy. To optimize the offloading strategy,
we establish the relation between PAI and the optimal split point
n∗. First, for personalized accuracy measurement, we leverage
the Contrastive Language–Image Pre-training (CLIP) model2

to assess the the similarity between the generated images and
the user’s prompt with additional personalized descriptions
concerning the targeted object, style, and other relevant as-
pects, denoted as CLIP(p+

i ,mi). To further focus on person-
alized performance, we use the Learned Perceptual Image Patch
Similarity (LPIPS) model3 to measure differences in the final
images generated by individual users, which is expressed by
LPIPS = E1≤i<i′≤|I|[LPIPS(mi,mi′)]. These images denoted
by mi,mi′ are based on the same intermediate result provided by
the cluster-wide model at the edge server, with each user apply-
ing their customized models for subsequent denoising inference.
In this sense, a greater difference between the images generated
by different users indicates stronger personalization. Based on
the fine-tuned cluster-wide model and local personalized model
presented in Section III-B, we conducted extensive simulation
experiments for hybrid inference by offloading varying numbers
of denoising steps to the edge server, which is detailed in
Section VI. From the simulation results, we can observe that,
as the split point decreases (the number of offloading steps in-
creases), both the accuracy and personalization metrics exhibit a
downward trend, with the decline in personalization being more
pronounced. However, this trend is not gradual. As the number of
offloaded denoising steps increases, the personalized features of
each user remain well-preserved within a certain range. Yet, once
a critical threshold–approximately when the offloaded steps
reach or exceed half of the total denoising steps–is crossed,
the degradation of these features accelerates significantly. With
excessive offloading, the generated images across different users
become nearly indistinguishable, ultimately losing their distinct
personalized characteristics. This phenomenon further confirms
the necessity of setting the value of N̂ as stated in Section III-C.

Moreover, to capture this effect, we modulate the LPIPS val-
ues using a sigmoid function, σP(x) =

1
1+exp(−a(x−b)) , where

x = LPIPS with varying split point, b represents the threshold
at which personalization undergoes a significant shift, and a

2https://github.com/openai/CLIP.
3https://github.com/richzhang/PerceptualSimilarity.

indicates the slope of this change. Based on the range of LPIPS
values and our observations, we set a = 30 and b = 0.1. Con-
sidering the interdependence and mutual reinforcement between
accuracy and personalization, the PAI can be expressed by

PAI = κ · Ei∈It
[
CLIP

(
p+i ,mi

)] · σP

(
LPIPS

)
, (1)

where κ = 3. Similarly, we also use the sigmoid fitting ap-
proach, denoted byF (·), with the fitting parametersaF > 0 and
bF > 0. This function is utilized in Section IV to formulate the
objective function that guides the optimization of the offloading
strategy and is detailed in Section VI.

IV. PROBLEM FORMULATION FOR EFFICIENT EDGE-ASSISTED

OFFLOADING

As stated in Section III-C, we assume that the edge server
allocates G GPUs to the set I of users who have sent requests
within the past time period Δ. Therefore, we assume that the
current offloading will not impact the performance of previ-
ous offloading strategies, and likewise, the performance of the
current offloading strategy will not be affected by subsequent
offloading. In this sense, we mainly focus on one snapshot of
personalized diffusion model offloading without loss of gener-
ality.

Before presenting the problem formulation, we first represent
the outcome of the offloading strategy by a one-hot matrix
x|I|×|D| and an integer index vector n∗|I|×1. Specifically, we
define two binary decision variables, xg

i and xd
i , corresponding

to grant and deny, respectively. For simplicity in subsequent
notation, we abbreviate as xj

i , j ∈ D = {g, d}. If xj
i = 1, it

indicates that the request handling corresponding to j is selected
for user i. In this sense, we should ensure

C1:
∑
j∈D

xj
i = 1, ∀i ∈ I, (2)

which signifies the condition that each request has only one
handling approach. Meanwhile, considering computational and
communication efficiency as well as stability, we assume that
the edge server imposes a concurrent user limit for the number
of users performing offloading in a single round, denoted Bmax.
In this sense, we have a common constraint in offloading tasks,
as below,

C2:
∑
i∈I

xg
i ≤ Bmax. (3)

In addition, for the spilt point determined by the offloading
strategy for user i, we denote it as n∗

i , which is consistent with
the definition of n∗ in Section III-D. Therefore, we have

C3: N̂ � n∗
i � N, ∀i ∈ I. (4)

Moreover, given the coupled relationship between decision vari-
ables x and n∗, an additional constrain is required as below,

C4: xd
i · (N − n∗

i ) = 0, ∀i ∈ I, (5)

which indicates that for users who do not offload, all denoising
steps are completed locally, with the split point determined as
n∗
i = N .
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After defining the decision variables and their domains, we
proceed to detail the objective function based on the QoE metrics
defined in Section III-D. First, we assign each user an individual
weight parameter, denoted as αi, which characterizes their em-
phasis on latency and PAI. The value ofαi can vary for each user.
Therefore, the QoE of user i can be comprehensively evaluated
as αiF(n∗

i )− Li. According to the definitions of the two forms
of E2E latency in Section III-D1, by integrating the decision
variables x into Li, Li can be uniformly expressed as

Li = �R + �T · xg
i + �E · xg

i + �L. (6)

Therein, �R = K − k, which is consistent for all users regard-
less of the different request handling they are assigned with.
Meanwhile, �L is also a common term for the E2E latency
corresponding to different request handling results, but its rep-
resentation varies. For xd

i = 1, the expression of �L is fixed
as �L = NLi(1), while for xg

i = 1, its expression may vary
depending on the user. With the constraint (5) in mind, �L can be
uniformly expressed as a function ofn∗

i , given by �L = n∗
iLi(1).

In contrast to �R and �L, terms �T and �E only exist in the E2E
latency for users whose requests are granted. Specifically, for
�T, it consists of the latency for both the uplink transmission of
the prompt and the downlink transmission for the intermediate
result. We denote the data sizes of the prompt and intermediate
noisy data by spi , and smi , respectively. Although JPEG encod-
ing may cause different split points to produce varying levels
of image noisiness, which can slightly affect the data size of
intermediate results, these differences have a negligible impact
on the E2E latency. Therefore, we assume the data size of the
intermediate results to be constant. Then, �Ti for the granted
users with xg

i = 1 can be calculated by

�T
i =

sp
i

ηW g
i

+
sm
i

ηW g
i

, (7)

where W g
i represents the bandwidth allocated to user i. Ac-

cording to the straightforward bandwidth allocation described in
Section III-A, where granted users share the bandwidth equally,
we have

W g
i =

Wmax∑
i∈I x

g
i

. (8)

The calculation of �Ei shares certain similarity with that of
�Ti . However, calculating the computational latency for edge
offloading presents more complications. Due to the varying
split points n∗

i for each user, the batch size may change during
the offloaded inference process, as shown in Fig. 2, leading to
potentially different computational latency for each denoising
step. Nonetheless, considering that the number of denoising
steps predominantly influences the overall latency, we simplify
the modeling of the batch size’s impact on latency. The batch
size during the offloading at the edge is assumed to be fixed as

bg =
∑
i∈I

xg
i . (9)

This simplification neglects the impact of certain tasks complet-
ing early on the reduction of the denoising step latency for the
remaining tasks. With the batch size to the maximum value, it

provides a conservative estimate of the worst-case latency. In
this context, �Ei can be expressed by

�Ei = (N − n∗
i )Le (bg, G) . (10)

In light of above, since we aim to optimize the overall perfor-
mance of all the users, the optimization problem of the offloading
strategy can be formulated as

max
x,n∗

∑
i∈I

αiF (n∗
i )− Li (P1)

subject to

(2), (3), (4), (5).

Proposition 1: The multi-dimensional coupled integer pro-
gramming problem shown in (P1) is NP-hard.

Proof: As shown in (P1), there are two sets of coupled opti-
mization variables, x and n∗ with high dimensions of |I| × |D|
and |I| × 1, respectively. To demonstrate that (P1) is an NP-hard
problem, we first simplify it into the form of a standard NP-hard
problem, ensuring that the fundamental complexity and core
structure remain unchanged. Then, based on the transitivity of
NP-hardness, we infer that the original problem is also NP-hard.
Specifically, we fix the value of the decision variable n∗

i by
n∗
i = N̂ for the granted users, assuming that these users do

not have high demands for image quality and are primarily
focused on reducing latency. Once users opt for offloading, they
offload the maximum possible number of denoising steps, i.e.,
(N − N̂). In this sense, the PAI metric

∑
i∈I αiF (n∗

i ) can be
reduced to a function dependent solely on x, i.e.,∑

i∈I
αiF (n∗

i ) =
∑
i∈I

∑
j∈D

Cijx
j
i , (11)

where Cd
i = αiF (N) and Cg

i = αiF (N̂). Meanwhile, C3 and
C4 are removed. Moreover, for the penalty term related to
latency, substituting (8) into (7), we have

�Ti =
∑
i′∈I

AT
i′gig · xg

i′ · xg
i , (12)

where AT
i′gig =

sp
i+sm

i

ηWmax
. Considering the overall transmission

latency of the multi-user system, we have

LT =
∑
j∈D

∑
j′∈D

∑
i∈I

∑
i′∈I

AT
i′j′ij · xj′

i′ · xj
i , (13)

where AT
i′j′ij = 0, if j = d or j ′ = d. Similarly, substituting

(9) into (10), and explicitly expanding the form of the function
Le(b,G) = ke(b/G) + he, we have

�E
i = DE

ig · xg
i +

∑
i′∈I

AE
i′gig · xg

i′ · xg
i , (14)

where DE
ig = (N − N̂)he and AE

i′gig = (N − N̂)ke/G. When
extending to multi-user system, we have

LE =
∑
i∈I

∑
j∈D

DE
ij · xj

i +
∑
j∈D

∑
j′∈D

∑
i∈I

∑
i′∈I

AE
i′j′ij · xj′

i′ · xj
i ,

(15)
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where DE
id = 0 and AE

i′j′ij = 0, except for AE
i′gig. In addition,

for the latency for local inference, similarly, we have

LL =
∑
j∈D

∑
i∈I

DL
ij · xj

i , (16)

where DL
id = N(ki + hi) and DL

ig = N̂(ki + hi). At last, for
LR, we have

LR =
∑
j∈D

∑
i∈I

DR
ij · xj

i , (17)

where DR
ij = K − ki, and ki denotes the moment when user i

sends the request to the edge, as stated in Section III-A.
Overall, with (11), (13), (15), (16), and (17), the objective

function of (P1) can be rewritten as

max
x

∑
i∈I

∑
j∈J

Dij · xj
i−

∑
j∈D

∑
j′∈D

∑
i∈I

∑
i′∈I

Ai′j′ij · xj′
i′ x

j
i , (18)

where Dij = Cij − (DL
ij +DE

ij +DR
ij) and Ai′j′ij = AT

i′j′ij +

AE
i′j′ij . According to [32, Theorem 1], the linear term can be

removed from (18) as the diagonal of matrix of quadratic terms.
Then, (18) can be reformulated as

max
x

∑
j∈D

∑
j′∈D

∑
i∈I

∑
i′∈I

Ãi′j′ij · xj′
i′ · xj

i , (19)

where Ãijij = Dij −Aijij while all other elements of Ãi′j′ij =
−Ai′j′ij , i

′ �= i, j′ �= j remain unchanged. If |D| = |I|, the op-
timization problem in (19) is is a QAP. However, in the vast
majority of cases, |D| 	 |I|. Additionally, considering the re-
maining constraint C2 in (3) from the original problem (P1),
the simplified version can be more accurately described as a
GQAP, widely proven to be NP-hard [33], [34] Since the re-
duced problem (19) remains NP-hard, the original (P1) includes
additional constraints and variables, making it more complex, it
is reasonable to infer that (P1) is at least NP-hard.

V. DRL-CONVEX HYBRID SOLUTION FOR EFFICIENT

EDGE-ASSISTED OFFLOADING

To address the GQAP about x, further complicated by the
additional optimization of a coupled decision variable of integer
index vector, n∗, in this section, we propose a novel DRL-
convex hybrid approach. Specifically, to make the extended
version of GQAP tractable, we first transform it into two nested
sub-problems with x and n∗, respectively, which is detailed in
Section V-A.

A. Insights for Nested Sub-Problem Formulation

Recall (P1): the optimal values ofx andn∗ are interdependent.
The total number of granted users, determined by x, influences
the batch size during the inference at the edge server, which in
turn affects the latency of each offloaded denoising step. This
leaves a customized trade-off between PAI and E2E latency. It is
shaped by each user’s local computational capacities (ki, hi) and
emphasis factors αi, ultimately impacting the optimal value of
n∗
i . Meanwhile, for each user i, the choice of n∗

i directly affects
their local inference latency �Li and offloaded inference latency

�Ei . For a specific emphasis factor αi, each user’s end-to-end
latency and PAI jointly determine the overall performance of
the whole scenario. Given the shared resources at the edge, it in
turn influences the optimal decision variable x.

Nevertheless, through an in-depth analysis of the coupling
nature, the variable x emerges as the dominant decision variable
between the two. Given a specific value of x, the inference
latency of each denoising step at the edge server becomes deter-
mined. Then, the optimization over n∗

i can be decoupled across
users and solved with a well-defined closed-form expression
with the consideration of their local computational capacities
(ki, hi) and emphasis factors αi. Moreover, each individual
n∗
i collectively contributes to the globally optimal n∗. In other

words, for a given x, it is relatively straightforward to derive the
optimal n∗ that maximizes system performance under the given
x. However, n∗ cannot be pre-set to readily determine x, as it
does not reduce the coupling effect among users. This leads to
an asymmetric dependency between n∗ and x.

With this in mind, we transform the original problem into two
nested sub-problems. We consider the optimization of request
handling, x, as the outer-layer optimization, while the optimiza-
tion of split point, n∗, is treated as inner-layer optimization.
Given the explicit formulation and the unified expression of
the problem about n∗

i across all users under a specific x, we
employ convex optimization with continuous relaxation to solve
it, as detailed in Section V-B. However, for a given x, explicitly
quantifying how the optimization ofn∗ contributes to the overall
performance achievable by the current x remains challenging.
Furthermore, the high dimensionality of the decision variable x
adds to the complexity of the outer sub-problem. In this sense, we
adopt a DRL-based approach to effectively capture a satisfactory
solution about x. Meanwhile, the implicit influence of n∗ on
on the optimality of x is incorporated into the environment
modeling within the DRL paradigm. This is elaborated in Sec-
tion V-C. Notably, the powerful learning capability of DRL also
mitigates the impact of decomposing (P1) into two sub-problems
on overall optimality.

B. Convex Optimization for Split Point Selection

In this subsection, we first present the formulation of inner-
layer optimization about n∗. Then, we analyze the convexity of
the optimization problem, followed by specifying the method for
determining the optimal solution. Finally, based on the problem
analysis, we provide insights on selecting emphasis values, αi,
for individual users with varying computational capacities.

For the users with xd
i = 1, we set n∗

i = N directly. Moreover,
we have that Li = �Ri + �Li , which is solely determined by the
moment when the user sends request and the computing power
of the local device. In this sense, given a feasible x, the inner
optimization problem on the split point only needs to be carried
out for the granted users for offloading, i.e., the users with xg

i =
1. Moreover, for the granted users, �Ti is solely determined x.
Therefore, once x is given, �Ti can be treated as a constant.
Meanwhile, the value of �Ei is joint determined byx andn∗

i . For a
given x, it depends only on n∗

i . Therefore, to ensure clarity in the
subsequent analysis, we simply �Ei (n

∗
i ,x) and �Ti (x) to �Ei (n

∗
i )
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and �Ti , respectively. In this context, the inner sub-problem can
be specifically formulated as follows:

max
n∗
i∈[N̂,N ]

αiF (n∗
i )−

(
�R + �E (n∗

i ) + �T + �L (n∗
i )
)
, (P2)

where i ∈ {
i|xg

i = 1 ∧ xd
i = 0

}
.

Proposition 2: The split point n∗
i optimization is concave

problem with a unique optimal solution within the domain
[N̂ ,N ].

Proof: For simplicity, we combine the constant terms that are
independent of n∗. Recall that �Ei = (N − n∗

i )Le(bg, G) and
�Li = n∗

iLi(1), the objective function is rewritten as

O(n∗
i )=αiF (n∗

i )−(Li(1)−Le (bg, G))n∗
i+Γ, (20)

where Γ = �R + �T −NLe(bg, G). Recall the expression of
F (n∗

i ) =
1

1+exp(−aF (x−bF )) as well as the second derivative of
the sigmoid function, we have

dO(n∗
i )

dn∗
i

=αiaFF (n∗
i ) (1−F (n∗

i ))−(Li(1)−Le (bg, G)) ,

d2O(n∗
i )

d(n∗
i )

2 = αia
2
FF (n∗

i ) (1− F (n∗
i )) (1− 2F (n∗

i )) .

Considering that both αi and aF are positive and F (n∗
i ) ∈

(0, 1), the sign of d2O(n∗
i)

d(n∗
i)

2 depends on (1− 2F (n∗
i )). Since

F (n∗) is a monotonically increasing function, we can select
an appropriate value of N̂ to ensure that F (n∗

i ) > 0.5 for all

n∗
i ∈ [N̂ ,N ]. Therefore, d2O(n∗

i)

d(n∗
i)

2 is constantly less than 0 within

the domain. In this sense, O(n∗
i ) is strictly concave. Within

[N̂ ,N ], (P2) has a unique optimal solution.
First, in case of Li(1) < Le(bg, G), which means that the

local inference latency per denoising step is lower than the infer-
ence latency at the edge server, dO(n∗

i)
dn∗

i
is strictly positive. In this

context, when n∗
i = N , (P2) reaches its maximum value, which

implies that user i completes inference locally. In contrast, if
Li(1) > Le(bg, G), the solution has three possible cases. Given

that d2O(n∗
i)

d(n∗
i)

2 < 0, O ′(n∗
i ) =

dO(n∗
i)

dn∗
i

is monotonically decreasing

on [N̂ ,N ]. Denote the term of αiaFF (n∗
i )(1− F (n∗

i )) by
F̄ ′(n∗

i ). If F̄ ′(N̂) > F̄ ′(N) > (Li(1)− Le(bg, G)), O(n∗
i )

is monotonically increasing within the domain, and n∗
i = N . If

F̄ ′(N) < F̄ ′(N̂) < (Li(1)− Le(bg, G)), O(n∗
i ) is monoton-

ically decreasing within the domain, and n∗
i = N̂ . In contrast, in

case of F̄ ′(N) < (Li(1)− Le(bg, G)) < F̄ ′(N̂), there exists

a value of n∗
i that makes dO(n∗

i)
dn∗

i
= 0, which is the optimal solu-

tion. Due to the difficulty in obtaining a closed-form expression
for n∗

i , its solution can be found using libraries for solving
equations, such as SciPy.

Remark 1: In the optimal solution analysis above, for users
whose local inference speed is lower than the inference speed
of edge offloading, the value of αi can be determined based on
the following guidelines. For a given αi >

(Li(1)−Le(bg,G))
aF F(N)(1−F(N)) ,

the focus of user i on PAI is overwhelmingly dominant. For

a given αi <
(Li(1)−Le(bg,G))

aF F(N̂)(1−F(N̂))
, the optimization problem ef-

fectively reduces to optimizing solely for latency. In contrast,
for (Li(1)−Le(bg,G))

aF F(N̂)(1−F(N̂))
< αi <

(Li(1)−Le(bg,G))
aF F(N)(1−F(N)) , it can achieve

a personalized trade-off between PAI and latency, with larger
values of αi placing greater emphasis on PAI. Although the
exact value of bg is unknown, the service provider can estimate
b̂g based on the number of active users in the area, thereby
offering each user a range for selecting αi. Additionally, it
should be noted that the latency optimization considered in
the individual split point only accounts for the computational
latency. To incorporate other types of latency integrated in Γ,
the exponent of the total latency term in O(n∗

i ) can be increased
accordingly.

C. DRL-Based Request Handling Optimization

In this subsection, we aim to present a novel low-complexity
DRL-based algorithm for the outer-layer problem of an extended
GQAP. Specifically, to solve the problem using DRL, we first
formulate it as a sequential decision problem, which is detailed
in Section V-C1. Subsequently, the optimal decision variablex is
determined by progressively making step-by-step decisions that
optimize the long-term reward, corresponding to the objective
of (P1). The decision-making policy for each step is introduced
in Section V-C2.

1) MDP Construction: As stated in Section II-C, unlike
ordering problems such as TSP, incrementally constructing a
sequence of nodes is not inherent in variants of GQAP. Con-
sequently, it cannot be straightforwardly transformed into a se-
quential MDP model, as is common in most existing COPs [26],
[27], [28]. Moreover, manually applying masking to exclude
previously selected actions from the action space is not a feasible
way to characterize MDP transitions in this context. Therefore,
we propose a novel MDP transformation paradigm with the
following key insights:
� Sequential Decision Modeling: The request handling pro-

cess for each user is treated as a stepwise decision-making
task, where the decoupled optimization on n∗

i can inte-
grated into the environment that the agent interacts with in
each step.

� User State Indicator: To capture dependencies among
users, we introduce an indicator in states to track past
actions for each user, the current user being processed, and
pending users.

� Cyclic Shifting Mechanism: This mechanism enhances the
agent’s ability to distinguish between different users’ states
during transitions.

� Reward Backpropagation: Since rewards depend on both
past and future decisions, we propagate rewards backward
to ensure accurate assignment at each step.

� Local-Global State Design: The MDP state consists of
local sub-states, characterizing individual users, and global
sub-states, which tracks resource constraints such as the
maximum and current number of granted users.

� Dynamic-Static State Design: The MDP state comprises
dynamic sub-states, capturing state transitions within an
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Fig. 4. Flowchart for transitioning from extended GQAP to decision sequence.

Fig. 5. Illustration of DQN-based request handling.

episode, and static sub-states, randomly initialized at the
episode’s start to help the policy adapt to varying system
configurations.

� Constraint-Aware Termination: Instead of using penalty
terms, episodes terminate automatically according to the
global sub-state when resource constraints reach their lim-
its, simplifying the learning process.

The specific MDP is shown in Fig. 4 and described as below.
State Space: To facilitate the agent to provide the optimal

solution for a specific scenario, it is essential to incorporate all
factors related to the objective value into the state. This includes
both static information about all users and the edge server,
such as computing power, and dynamic information shaped by
decisions in prior steps. Specifically, as shown in Fig. 5, we
define the state as comprising both local and global sub-states,
each further divided into static and dynamic elements. Denote
the index of steps by t. The local sub-state for user i is denoted
by slt,i = [αi, �i, ki; oi,t]. Therein, αi is the emphasis of user i

on the PAI and E2E latency, ki is the moments when user i sends
the request to user i, and �i = ki + hi represents the latency per
local denoising step, which is dependent on the computing power
of user i’s device. These three elements are static during the
environment evolution. In contrast, oi,t is the dynamic element,
which acts as the indicator of four status. For users whose
requests are not handled, oi,t = 0; for the user which is identified
to be in progress of request handling in the current step, oi,t = 1;
for the user whose request has been granted, oi,t = 2; and for the
users whose request has been denied, oi,t = 3. For clarity, we
denote the index of the user with oi,t = 1 as i = t. Meanwhile,
the global state is denoted by sgt = [Bmax, k̂e, he; Īt,Θ

g
t ,Θ

d
t ].

Similarly, the first three elements are static, where Bmax repre-
sents the maximum number of users allowed to offload to the
edge server in a round, and k̂e, (k̂e = ke/G), together with he
jointly characterizes the computing power of the edge server.
Meanwhile, Īt, Θ

g
t , and Θd

t are the dynamic elements in the
global sub-state, which represent the total number of the users in
pending, the total number of the granted users, and the total num-
ber of the denied users, respectively. In this context, as shown
in Fig. 5, the complete representation of the state can be given
by st = [sl

t,t, s
l
t,t+1, . . . , s

l
t,I , s

l
t,1, . . . , s

l
t,i, . . . , s

l
t,t−1, s

g
t ].

Action Space: In each step t, the action of agent is to grant
or deny the offloading request of user i from the perspective of
optimizing overall system performance. In this context, we have
at ∈ {0, 1}. If at = 1, xg

t = 1 and xd
t = 0, otherwise, xd

t = 1
and xg

t = 0.
Transition Rule: The state transition is determined solely by

the action in a deterministic manner. Assume that in step t, the
request of user t is in progress. Then, in the next state st+1,
Īt+1 = Īt − 1. Moreover, if at = 1, ot,t+1 = 2 and Θg

t+1 = Θg
t

+1, otherwise ot,t+1 = 3 and Θd
t+1 = Θd

t +1. Meanwhile, the
indicator of the user for request handling in the next step is set
to 1, i.e., ot+1,t+1 = 1. Moreover, to enable the agent to more
easily capture the distinct characteristics of the currently selected
user, we apply cyclic shifting as shown in Fig. 5 to consistently
position this sub-state at the beginning of the local sub-state.
Additionally, there are two conditions for the end of an episode
during the transition process: 1) if, in a state, Īt = 0, it signifies
that all users’ requests have been processed, then the episode
ends 2) if, in a state, the value of Θg

t = Bmax, it indicates that
the maximum limit of granted users has been reached, then the
remaining users’ requests are directly considered as denied and
the episode ends. That is, ot, i = 3 for i > t.

Reward: Due to the batching technique, the total number
of granted users bg determines the inference latency of each
offloaded denoising step across all granted user. This, in turn,
affects the individual trade-off between E2E latency and PAI, as
discussed in Section V-B. Moreover, the reward for processing
a user’s request at each step depends not only on past decisions,
which are embedded in the state representation, but also on future
decisions, which significantly influence the final outcome. As a
result, the exact QoE for each user cannot be determined until
the episode ends. To address the challenge of sparse rewards in
the learning process, we adopt a reward backpropagation mech-
anism to accurately assign rewards at each step. As illustrated in
Fig. 5, we first calculate the cumulative reward function–i.e., the
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objective function value–after the episode terminates based on
all oi in the final state. Then, each user’s achieved PAI at every
step is treated as an immediate reward, while the difference
between the cumulative reward and the cumulative PAI from
previous steps serves as the reward for the final step of the
episode. The specific formulation is shown as

rt =

{
αtF (n∗

t) , done = FALSE,∑I
i=t αiF (n∗

i )−
∑I

i=1 Li, done = TRUE,
(21)

where I represents the total number of users sending the re-
quest for offloading, and the flag “done” serves as an indicator
of whether the episode terminates. Notably, as shown in the
yellow block in Fig. 4, F (n∗

t) is derived based on the convex
optimization discussed in Section V-B.

2) PER-DQN-Based Policy Design: Recall (21); the objec-
tive function in (P1) is transformed into the expected cumula-
tive reward E[

∑
t∈I γ

trt], with γ = 1. Considering the discrete
and small action space, we choose the simple, low-complexity
DQN algorithm [35] to learn a policy π to maximize the
action-state value at each step, which is defined as Q(st, at) �
E[
∑Iend

t′=t γ
t′rt′ |st, at]. The optimal action-value function is de-

fined as Q∗(st, a) � maxπQπ(st, at), from which the optimal
policy can be decided as π∗ = argmaxaQ

∗(st, a). Then, the
Bellman equation for Q∗(·) can be expressed by

Q∗ (st, at) = E

[
rt + γmax

a
Q∗ (st+1, a) |st, at, π∗

]
. (22)

To enable the agent to accurately learn the Q-values corre-
sponding to different (st, at), and more easily capture changes
in the indicator, we use a neural network (NN) to model the
relationship. Specifically, as shown in Fig. 5, we first embed the
indicator within each local sub-state and then concatenate it with
the static elements. Finally, the encoded state is flattened and fed
into the dense layers.

To help the agent find the optimal policy, we utilize a
hybrid of ε-greedy exploration [35] and Boltzmann explo-
ration [36]. Moreover, in order to keep the learning stabil-
ity, we use two NNs with the same structure and the initial
weights. One named current network is used to choose the
action, the weights of which are denoted by θc and update
in each training step. The other named target network is used
to calculate the Q-value, the weights of which are denoted by
θt and update periodically according to θc. In each step, the
agent samples a mini-batch of the experiences from the memory
to train the NN. The loss function used in training is given
by

Lloss = E

[(
yt −

(
max

a
Q∗ (st, a;θc)

))2
]
, (23)

where yt=rt + γmaxa Q
∗(st+1, a;θt). Moreover, given the

high variance in experiences, we assign the experience about
the terminal state more attention. When sampling experiences,
we set the ratio of selected terminal states to preceding states
at 1:7. Meanwhile, we also employ Prioritized Experience Re-
play (PER) [37], where the experiences are sampled based on
their significance, prioritizing transitions with higher learning

potential to improve training efficiency. The setting of hyperpa-
rameters is detailed in Section VI.

VI. SIMULATION AND EVALUATION

In this section, we detail the fine-tuning of the cluster-wide and
local personalized models, along with PAI function fitting. We
then describe the hybrid inference simulation setup and analyze
PER-DQN performance. All related code, datasets, and fine-
tuned models are available at https://github.com/wty2011jl/E-
MOPDM.

A. Pre-Deployment Fine-Tuning & PAI Fitting

In this work, we employ the Dreambooth technique [38]
to fine-tune a cluster-wide model and three local personalized
models. Each local dataset includes seven photos of the corre-
sponding user’s pet. The cluster-wide model’s dataset comprises
nine images: six selected from local datasets and three gener-
ated using prompts with detailed personalized descriptions. We
fine-tune the text encoder and UNet using an NVIDIA GeForce
RTX 4090, to redefine the specific representation corresponding
to “dog” for each user individually. Using the fine-tuned models,
we simulate the hybrid inference process with the total denoising
steps of 200 using 10 prompts, each prompt generate 20 images
for each users. The virtual results have been shown in Fig. 6.
To facilitate comparison, we present the personalized results
generated by three users for each prompt. However, in our
algorithm design, we assume that the prompts for each user
are distinct. From the figure, we observe that when n∗ > 80,
shared offloading leads to uniform image layouts across three
users, yet the dog portraits remain successfully personalized lo-
cally without additional detailed descriptions. Conversely, when
n∗ < 80, there is a significant decrease in personalized accuracy.
Specifically, only the facial expressions retain the distinct char-
acteristics of different dog breeds, while highly differentiated
features such as the ears are not successfully altered. Therefore,
we choose N̂ = 80. In addition, we can also observe that as
the number of offloading steps increases, only the personalized
aspects deteriorate, and people’s visual evaluations align with
the changes in our PAI metric defined in (1). Moreover, we
present a scatterplot showing the mean PAI values for 20 images
generated per prompt across 10 different prompts, with varying
numbers of the split point n∗ as depicted in Fig. 7. We then
apply a sigmoid fitting to these scatter points, with parameters
aF = 0.0413 and bF = 71.44.

B. Hybrid Inference Simulation Setup

1) Scenario Parameter Settings: We consider a scenario in-
volving a single edge server and multiple users sending offload-
ing requests within the past Δ. In the following simulations, the
determination of inference latency and PAI is based on empirical
functions derived from actual experiments, as shown in Figs. 3
and 7. Specifically, we assume that the edge server is equipped
with G GPUs, all of the H100 NVL, while users have a single,
varying local GPU, which could be one of the other types:
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Fig. 6. The visual results of hybrid inference. Therein, “sks” in the prompts is the identifier for the personalized objects to the generated. Meanwhile, in
evaluating the semantic accuracy using CLIP, we replace the original prompt term “sks” with personalized descriptive words such as “Corgi,” “Golden Retriever,”
and “Samoyed”, respectively for the three users.

Fig. 7. The fitting curve for the relation between PAI and split point, along with
the mean values of accuracy and personalization for CLIP and LPIPS metrics
across 200 sets of image generated from 10 prompts at each split points.

{RTX 2060, GTX 1080, . . . , RTX 4090}. Meanwhile, the em-
phasisαi of user ion the PAI and the latency is randomly selected

from the interval [ (Li(1)−Le(b̂g,G))

aF F(N̂)(1−F(N̂))
,
κ(Li(1)−Le(b̂g,G))
aF F(N)(1−F(N)) ], where

we set b̂g = 20 and κ = 0.05. The introduction of κ accounts
for the fact that users sending offloading requests tend to be
more sensitive to latency to varying extend. Moreover, we set
the total bandwidth Wmax = 1 MHz. Assuming the base station
employs power control, the spectral efficiency for each user
is set as η = 10 bits/s/Hz. Considering that the data sizes of
the intermediate noisy image and prompt of different users are
approximately equal, we substitute the specific noisy image and
prompt for each user with their respective means. Thus, we have
spi = 216 b, and smi = 4.4 Mb.

2) PER-DQN Hyperparameter Settings: The Q-network
consists of one embedding layer, three hidden linear layers and

an output layer. The vocabulary size and embedding dimension
of the embedding layer are set as 4 and 3, respectively. Each
of the hidden linear layer has 256 nodes. The output layer has
two nodes. The target network is updated at a frequency of
once every 2000 time steps. The memory capacity is 400000,
the batch size is 128, and the learning rate is 0.0001. The
exploration probability ε linearly decreases from 0.5 to 0.001.
The temperature parameter of Boltzmann exploration linearly
decreases from 5 to 0.01. During PER, the priority exponent is
set to 0.7, the importance sampling weight is set to 0.3, and the
priority offset is set to 0.00002. Moreover, during the training,
the reward is scaled to 0.1 of its original value. Moreover, the
training is performed on a GeForce RTX 4070 Ti. To save
training time, the inference latency of different GPUs is obtained
from prior empirical measurements on various GPU models, as
summarized in Fig. 3.

C. Hybrid Inference Performance Analysis

First, we analyze the key factors influencing the optimal
offloaded denoising steps and their respective impacts. As shown
in Fig. 8(a), given an edge server with 8 available GPUs, as
the batch size at the edge increases, the inference latency per
denoising step at the edge server lengthens, and the optimal
number of offloaded steps gradually decreases. Additionally, for
the same batch size, the stronger the computational capacity of
the user’s local device, the fewer offloaded steps are required,
with more denoising steps executed locally. Furthermore, as
illustrated in Fig. 8(b), with an increase in the number of GPUs
on the edge server and the resulting improvement in inference
speed, the optimal number of offloaded steps also increases. Both
sub-figures indicate that as the value of αi increases, reflecting
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Fig. 8. The relationship between the number of denoising steps offloaded and user emphasis αi under varying configurations. (a) Analysis with differing batch
sizes at the edge server and varying computational capacities of the local terminal. (b) Impact of different numbers of available GPUs on the edge server combined
with varying batch sizes.

Fig. 9. Learning curves for DRL algorithms across varying scopes: (a) General application with 2000 random seeds and smoothing over 1000 points.
(b) GPU-constrained application with 1000 random seeds and similar smoothing. (c) Specific application with a single seed and smoothing over 100 points.

heightened user focus on PAI, the optimal offloaded steps de-
crease accordingly. Moreover, when computational resources
are relatively abundant, αi exerts a dominant influence on the
optimal offloading steps. Conversely, with a smaller number of
available GPUs, batch size has a more significant impact on the
optimal number of offloaded steps.

Next, we integrate the aforementioned split point optimization
into the modeling of environmental transitions in the MDP
model. Through simulations, we verify the effectiveness of the
proposed DQN-convex hybrid solution. Given different appli-
cability scopes, we train three types of Q-networks tailored for
the following three scenarios:
� General Applicability: For scenarios with evolving compu-

tational resources at the edge, dynamic numbers of users,
and various user combinations, with a greater emphasis on
the algorithm’s generalizability.

� GPU-Constrained Applicability: For cases with specific
computational resources, dynamic numbers of users, and
various user combinations, striking a balance between
generalizability and optimality.

� Specific Applicability: For scenarios with fixed computa-
tional resources, a specific number of users, and a particular
user combination, focusing more the with a greater focus
on the algorithm’s optimality.

The learning curves for the three application scopes are shown
in Fig. 9. From the figure, we can observe that the agent can learn

effectively in all three cases. Additionally, the more generaliz-
able the model, the greater the fluctuation in its convergence
curve, which is mainly due to the inherent diversity of the en-
vironment. Moreover, the performance of models with different
applicability scopes is shown in Fig. 10. From Fig. 10(a), we
observe that the model tailored to specific applications achieves
generally superior performance. Specifically, excluding the im-
pact of local computational heterogeneity and user preferences,
the average performance tends to increase as the number of users
decreases and the number of available GPUs on the edge server
increase. As shown in Fig. 10(b) and (c), this improvement
is primarily due to the inference latency reduction achieved
through offloading, which outweighs the performance loss from
potential PAI degradation. However, it is important to note that
each performance value in this figure is derived from a specific
configuration. Thus, the increase in user count from 8 to 12 not
only represents a 1/3 increase in users, but the additional users’
computational power and emphasis parameters also impact
performance. As shown in Fig. 11(a), when 100 cases are ran-
domly generated for different user counts and then averaged, the
sudden “jump” from 12 to 8 in the curve is smoothed out. Given
the slight performance difference across the three algorithms,
the model for general application is preferred in highly dynamic
environments, as it avoids the computational cost associated
with frequent retraining and fine-tuning. For scenarios with a
fixed set of requesting users, the model tailored for specific
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Fig. 10. Performance comparison of three DRL algorithms with different applicability scopes for the same specific case. (a) Overall all performance. (b) Average
PAI. (c) Average E2E latency.

Fig. 11. Performance comparison : (a) Comparison between three baselines: Average performance versus number of users (100 cases/user count); (b) Comparison
between three baselines: Average performance versus number of GPUs on edge server (100 cases/GPU configuration). (c) Comparison between DRL-convex hybrid,
Branch & Bound, and Heuristic methods (100 cases/user count).

applications can be selected to achieve optimal performance.
The model for GPU-constrained applications strikes a balance
between generality and optimality by training separate models
tailored to each GPU availability scenario, leveraging the model
redundancy to accommodate varying GPU constraints.

In the subsequent algorithm comparisons, we focus on the
more common dynamic scenarios and use the general model
for performance analysis. First, we compare this algorithm with
the commonly used straightforward approaches for personalized
diffusion model inference. Three baseline methods considered
are as follows:
� Baseline 1: Within the maximum batch size supported

by the edge server, all users offload to the edge, with
optimization of the split point.

� Baseline 2: Within the maximum batch size supported by
the edge server, all users offload to the edge, with a fixed
offloading of N̂ steps.

� Baseline 3: All users perform the complete inference lo-
cally.

For baseline 1 and baseline 2, if the total number of users
sending requests exceeds the maximum batch size supported by
the edge server, users who send requests later perform inference
locally. Fig. 11 presents a comparison of the proposed algorithm
with three baseline methods, illustrating the performance trends
as the number of users and the available GPUs on the edge
server vary. Specifically, in Fig. 11(a), we fix the number of
available GPUs on the edge server to 8, while in Fig. 11(b),

we fix the number of users in each case to 20. Observing both
subfigures, baseline 3, where all inference is completed locally
by users, shows no noticeable trend in average performance as
the number of users or available GPUs changes. In contrast, for
the other three methods, average performance declines as the
number of users increases or the number of GPUs decreases.
Furthermore, since baseline 1 incorporates split point optimiza-
tion compared to baseline 2, baseline 1 consistently maintains
a stable performance gap above baseline 2. Additionally, due
to its joint optimization of split point and request handling,
the performance variation of the proposed method is narrower
than that of baselines 1 and 2, and it consistently outperforms
other baseline algorithms. This result further indicates that the
algorithm can flexibly adaptively trade off between PAI and
latency across different scenarios, achieving optimal overall
performance.

Finally, we demonstrate the effectiveness and optimality of the
DRL-convex hybrid solution for the extended GQAP by com-
paring it with two widely used methods for GQAP: a heuristic
algorithm and a branch & bound-based Integer Linear Program-
ming (ILP) method. The heuristic algorithm selects is a genetic
algorithm with a population size of P = 100 and an iteration
count of M = 200. Additionally, as the optimal split point lacks
a closed-form solution, we omit the split point optimization in
the Branch & Bound-based ILP method for simplicity. As illus-
trated in Fig. 11(c), the proposed DRL-convex hybrid solution
outperforms the other methods, achieving superior performance.
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TABLE II
COMPLEXITY COMPARISON REGARDING USER COUNT

Specifically, due to the omit of the split point optimization, the
Branch & Bound based method, the optimality of the method
consistently remains lower than that of our proposed method.
Additionally, although the heuristic algorithm does not require
the rigorous mathematical formulation demanded by the Branch
& Bound based method, it can incorporate split point optimiza-
tion. However, its stability in terms of optimality is noticeably
lower than that of the other two algorithms. As a result, while
it may occasionally achieve the same level of optimality as our
proposed DRL-convex hybrid method, its average performance
is the poorest. Moreover, the complexity of the three methods
with with respect to user count I as shown in Table II. From the
table, since in the process of constructing the MDP model, we
transform the original problem with high-dimensional optimiza-
tion variables into a decision sequence problem focused on a
single variable, the proposed DRL-convex hybrid method shows
a linear complexity of O(I). This linear growth suggests that
the DRL-Convex Hybrid Method is scalable and well-suited for
scenarios with a large number of users. In contrast, the Heuristic
Algorithm-Based Method has a complexity of O(2 · P ·M · I).
Although it also scales linearly with I , its overall complexity is
influenced by P and M , requiring careful parameter tuning to
ensure efficiency as the user count rises. In addition, the conven-
tional Branch & Bound-Based Method presents an exponential
complexity of O(22×I), which grows rapidly with increasing I .
This exponential growth makes it work for small-scale problems
and impractical for large-scale scenarios, as the computational
cost becomes prohibitive. Overall, with a well-trained Q net-
work, the DRL-convex hybrid algorithm is more viable for larger
user counts due to their manageable complexity.

VII. CONCLUSION

We proposed an efficient offloading framework for deploy-
ing personalized SDMs in multi-user scenarios with diverse
computing capabilities. To balance latency and accuracy, we
have introduced a tunable emphasis parameter and formulated
offloading and split-point optimization as an extended GQAP.
A DRL-convex hybrid approach has enabled real-time decision-
making. Simulations have demonstrated the effectiveness of the
proposed framework and solutions.

However, several limitations remain: 1) In this work, the
cluster-wide model and local models share the same size and
are independently trained on different datasets. This may limit
the cluster-wide model’s ability to capture common features
effectively, and the impact of switching between inference
models has not been considered. 2) Our approach assumes a
given cluster as the starting point. However, key aspects such
as evaluating user similarity within a cluster, defining cluster

partitions, and understanding the relationship between cluster-
wide model generalization and individual users’ final PAI remain
unexplored.

In light of above, in future work, we will pursue further
optimization from the three perspectives: 1) to enhance the
generalization capability of the model, we will design train-
ing optimization methods for cluster-specific models, achiev-
ing a trade-off between model size and PAI performance; 2)
we will explore optimal clustering methods based on task
similarity to balance the storage and computational energy
consumption of multi-cluster-wide models with PAI perfor-
mance. 3) We will develop a joint training algorithm for
both the cluster-wide model and the personalized local mod-
els based on the federated learning with the ingenious hier-
archical clustering-based aggregation method. This can also
address the scenarios where users have insufficient local
data.
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