
1536-1284/22/$25.00 © 2022 IEEE IEEE Wireless Communications • October 202228

Abstract
The development of emerging applications, such 

as autonomous transportation systems, is expect-
ed to result in an explosive growth in mobile data 
traffic. As the available spectrum resource becomes 
more and more scarce, there is a growing need 
for a paradigm shift from Shannon’s Classical Infor-
mation Theory (CIT) to semantic communication 
(SemCom). Specifically, the former adopts a “trans-
mit-before-understanding” approach while the lat-
ter leverages artificial intelligence (AI) techniques 
to “understand-before-transmit,” thereby alleviating 
bandwidth pressure by reducing the amount of data 
to be exchanged without negating the semantic 
effectiveness of the transmitted symbols. However, 
the semantic extraction (SE) procedure incurs costly 
computation and storage overheads. In this article, 
we introduce an edge-driven training, maintenance, 
and execution of SE. We further investigate how 
edge intelligence can be enhanced with SemCom 
through improving the generalization capabilities of 
intelligent agents at lower computation overheads 
and reducing the communication overhead of infor-
mation exchange. Finally, we present a case study 
involving semantic-aware resource optimization for 
the wireless powered Internet of Things (IoT).

Introduction
With the ongoing convergence of information and 
communication technologies (ICTs) and artificial intel-
ligence (AI), the “Internet of Everything” has been 
considered as one of the key 6G visions, wherein 
semantic communication (SemCom) and edge intelli-
gence are expected to be two key enablers [1].

SemCom is widely regarded as a promising 
communication paradigm to breakout the “Shan-
non’s trap.” In fact, SemCom is not an entirely new 
concept. Just after the introduction of Shannon’s 
theorem, Weaver and Shannon went on to identify 
three levels of problems within the broad subject 
of communication [2]:
•	 Technical level: How accurately can the symbols 

of communication be transmitted?
•	 Semantic level: How precisely do the transmit-

ted symbols convey the desired meaning?
•	 Effectiveness level: How effectively does 

the received meaning affect conduct in the 
desired way?

Shannon’s Classical Information Theory (CIT) [3] 
focuses only on the technical level and achieves 
success in deriving a rigorous mathematical theo-
ry of communication based on probabilistic mod-
els, wherein the information is defined as what 
can be used to remove uncertainty and quantified 
based on the probability of its occurrence from 
the given source.

However, the achieved transmission rates in the 
CIT-driven conventional communication systems 
are approaching the Shannon limit1 and the avail-
able spectrum resources are becoming increas-
ingly scarce. Moreover, the rapid development of 
emerging applications, for example, autonomous 
transportation systems, leads to a never-ending 
growth in mobile data traffic. In this regard, Sem-
Com has returned to relevance. Empowered by AI 
technologies such as computer vision (CV) and nat-
ural language processing (NLP), end devices such 
as sensor nodes or smartphones may eventually be 
equipped with human-like reasoning capabilities. 
Accordingly, semantic extraction (SE) can be inte-
grated into the communication model to achieve 
SemCom. SemCom, thus, allows only the infor-
mation of interest to the receiver for transmission, 
rather than raw data. As a result, bandwidth con-
sumption can be reduced substantially and privacy 
preservation can be enhanced through avoiding 
entire data to be exchanged. However, there are 
still some factors hindering the implementation of 
SemCom. For instance, the training process of SE 
models requires significant computing and storage 
resources, thereby impeding the scalable imple-
mentation of SemCom on resource-constrained 
end devices. Furthermore, in building a common 
knowledge base toward improving the generaliza-
tion capabilities of SE models, other issues such as 
privacy loss may arise.

Fortunately, edge intelligence is promising to 
facilitate the scalable implementation of SemCom 
systems. The precursor to edge intelligence is edge 
computing, which moves part of the service-spe-
cific processing and data storage from the cen-
tral cloud to the edge of the network closer to the 
source of data. In 5G networks, edge computing 
has already made significant achievements in terms 
of improving performance, and supporting new 
services and functions. Empowered by AI technol-
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AI FOR OPEN PROGRAMMABLE VIRTUALIZED NETWORKS IN 6G ogies in 6G, edge intelligence aims to off er more 
powerful computational processing and massive 
data acquisition at the edge networks to achieve 
the dynamic and adaptive edge maintenance and 
management [4]. Therefore, edge intelligence can 
provide a good basis for off loading SE model train-
ing and knowledge storage.

On the other hand, to realize the 6G vision of 
ubiquitous AI, distributed learning and inference
have become instrumental to contribute toward 
the intelligentization of edge networks [5]. How-
ever, the data-driven approach implies that AI-en-
abled agents have to incur costly communication 
and computation overheads, which poses challeng-
es for the communication network, especially amid 
the uncertain wireless environment and limited 
wireless resources. In this regard, SemCom can be 
seen as a key enabler of edge intelligence.

Our contributions in this article are as follows:
• We introduce a general system model for Sem-

Com involving the three communication levels 
foreseen by Shannon and Weaver. We then 
discuss typical semantic metrics and key SE 
techniques.

• To address the costly implementation over-
heads of training, maintaining, and executing 
SE models for SemCom, we introduce edge 
enabled SemCom by studying a Federated 
Learning (FL) enabled SE system model and 
edge-sharing knowledge graph for the seman-
tic management. We also introduce the role 
of SemCom in training intelligent agents and 
empowering communication-effi  cient distribut-
ed machine learning (ML).

• We insightfully discuss the open issues and 
future research directions that are at the inter-
section of AI and communications toward Sem-
Com, a key component of 6G networks.

• We provide a case study of semantic-aware 
resource allocation in wireless powered IoT. 
Different from the CIT-driven IoT, our study 
utilizes an AI-driven allocation mechanism 
to derive the resource allocation policy that 
maximizes semantic performance across the 
network.

prelImInArIes
SemCom diff ers from traditional Shannon com-
munication in that it incorporates human-like 
“understanding” and “inference” into the encod-
ing and decoding of communication data, no 
longer pursuing exact data replication. In this 
section, we provide a brief introduction of the 
SemCom framework and typical semantic met-
rics. We then discuss the key SE techniques in 
the existing works.

semcom frAmework
Diff erent from the content-blind classical commu-
nication systems, what matters in SemCom design 
is the accuracy of semantic content, instead of 
the average information associated with the pos-
sibilities of source data that can be emitted by 
a source [6]. As such, the main changes in the 
SemCom system lie in the data processing before 
sending and after receiving. (Fig. 1). Before 
encoding, the source data goes through the 
semantic representation module, which can be 
seen as the “understanding-before-transmission” 
process, during which the redundant information 

is removed. Then, the extracted relevant infor-
mation goes to the semantic encoding module. 
In general SemCom scenarios, semantic decod-
ing is the inverse process of encoding, which are 
jointly determined based on the AI technologies 
and their prior knowledge. For brevity, we refer 
to both semantic encoding and decoding as SE, 
and semantic encoding (decoding) in the subse-
quent text is considered to be integrated with the 
semantic representation (interpretation) module.

As with human conversation, effective con-
versation requires common knowledge of each 
other’s language and communication context. In 
SemCom, the background knowledge (BK) of the 
communication parties has to be shared in real 
time to ensure that the processes of understand-
ing and inference can be well-matched for all the 
source data. If the BK fails to match, semantic noise
is generated, thereby resulting in performance deg-
radation even in the absence of syntactic errors 
during the physical transmission.

Moreover, in some cases wherein the goal of 
communication may change, all possibilities for 
communication goals should be included in the 
BK and the communication goal should instruct SE 
to fi lter out irrelevant semantic information (SI) in 
each transmission.

semAntIc metrIcs
The design of network performance metrics has 
long been a nucleus concern in network design 
and optimization. As the study on SemCom is 
still in its early stage, most semantic metrics are 
derived from NLP (Table 1). Diff erent from bit-er-
ror rate (BER) or symbol-error rate (SER) in clas-
sical communication systems, SemCom avoids 
treating packets equally, and measure the diff er-
ences in the meaning conveyed by the recovered 
sentence and transmitted sentence. Besides such 
error-based metrics, some other metrics focus on 
timeliness. Age of information (AoI)-based metrics 
highlight the importance of data packet freshness, 
which allows scheduling schemes based on AoI 
minimization to filter out the irrelevant packets 
given the bandwidth constraints. By jointly consid-
ering the accuracy and timeliness of information, 
the authors in [9] introduce the metric of age of 
incorrect information (AoII) to SemCom, which 
measures the network performance by looking at 

FIGURE 1. SemCom model [2, 7].
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a bigger picture of the packet’s role in achieving 
the overall communication goal.

Moreover, for the cases where the benefi ts of 
some packets to be transmitted are evaluated to 
be important for the system objective, the value 
of information (VoI) is of more concern than accu-
racy. Hence, the VoI-related metrics can be used 
toward goal-oriented communications that capture 
the importance, relevance, and priorities of pack-
ets. Some SemCom examples and the three typical 
types of metrics are presented in Fig. 2.

semAntIc eXtrActIon technIQues
We now discuss some key SE techniques, the gen-
eral models of which are shown in Fig. 3.

Deep Learning Based SE: With the advancement 
of Transformer, squeeze-and-excitation network, and 
deep residual network, deep learning (DL) has been 
widely employed in SE for text, speech, and image 
transmission. DL-based SE aims to enhance the sys-
tem robustness at a low signal-to-noise ratio (SNR) 
with a shorter bit-flow. The encoder and decoder 
are usually modeled as two separate learnable sec-
tions, and linked through a random channel, which 

are trained jointly [10]. During the training process, 
the Generative Adversarial Networks (GANs) are 
commonly used to model the channel dynamics 
and noise. However, as the loss function is gener-
ally required to be diff erentiable, the common loss 
functions such as cross entropy are adopted during 
the model training process. This treats the semantic 
contribution of data with equal importance, which is 
inconsistent with human perception.

Deep Reinforcement Learning Based SE: 
Deep Reinforcement Learning (DRL) can integrate 
non-diff erentiable semantic metrics like BLEU into 
SE training. In the DRL-based SE for text transmis-
sion in [8], long short-term memory networks are 
employed in the encoder and decoder. The state 
is defined as the recurrent state of the decoder 
and the previously generated words. The transition 
between the two adjacent states is determined by 
the next generated word, and the action of the 
DRL agent is to generate a new word, with the 
action space defined by the dictionary dimen-
sion. As the semantic metrics can only be used 
as the long-term return in DRL, self-critic training 
is employed to address the challenging issue for 

TABLE 1. Some semantic metrics derived from NLP [8].

Semantic metrics Advantages Drawbacks

Bilingual evaluation 
understudy (BLEU)

BLEU is a method for automatic evaluation for machine 
translation. It is used to compare word groups with 
diff erent size of the candidate with that of the reference 
translation and count the number of matches.

It considers the linguistic laws, 
such as that semantically 
consistent words usually come 
together in a given corpus.

It only calculates the diff erences of 
words between two sentences and 
has no insight into the meaning of 
the whole sentence.

Consensus based 
Image Description 
Evaluation (CIDEr)

CIDEr was proposed as an automatic consensus 
metric of image description quality in, which was 
originally used to measure the similarity of a generated 
sentence against a set of ground truth sentences 
written by humans. It can also be used to evaluate the 
communication performance for text transmission.

Compared to BLEU, it does 
not evaluate semantic similarity 
on the basis of a reference 
sentence, but a set of sentences 
with the same meaning.

Similar to BLUE, it is also based on 
the comparisons between word 
groups, and the semantic similarity 
can only be captured at the word 
level.

Sentence similarity

Sentence similarity is calculated as the cosine similarity 
of the semantic features extracted bidirectional encoder 
representations from transformers (BERT). BERT is a 
fi ne-tuned word representation model, which employs a 
huge pre-trained model including billions of parameters 
used for extracting the SI.

Th e SI in this metric is viewed 
from a sentence level owing 
to the sensitivity of BERT to 
polysemy, (e.g., word”mouse” in 
biology and machine).

Th e pre-trained BERT model 
introduces much resource 
consumption in the training 
process and makes it hard to 
generalize in other tasks.

FIGURE 2. Some SemCom examples and metrics, where xt denotes the transmitted information, and x̂t denotes the estimated informa-
tion inferred from the transmission [9].
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identifying the intermediate rewards, that is, the 
impact of each step on the semantics of the whole 
sentence. Moreover, for other non-sequential task, 
the decoding process needs to be transformed into 
a recurrent procedure beforehand.

Knowledge Base Assisted SE: Knowledge Base 
(KB) is a special database for knowledge man-
agement, which is widely used in automated AI 
systems to store the data with formal represen-
tation allowing for inference. The KB-assisted SE 
integrates the KB into the encoder and decoder, 
aiming to extract more SI related to the commu-
nication task for a given transmission bit limitation 
[7]. Specifi cally, the KB in Semcom is composed 
of source information, communication tasks, and 
the possible ways of reasoning that can be under-
stood, recognized, and learned by communica-
tion participants. During the SE process, the KB is 
employed to quantify the level of relevance of SI 
for diff erent communication tasks and instruct SE 
to capture the SI that is closely related to the task 
in each transmission. Meanwhile, as KB-assist SE 
is in an end-to-end manner, the KBs at both sides 
need to be kept in synchronization.

Semantic-Native SE: In the aforementioned 
methods, the SI is fixed. In [11], the authors pro-
pose a semantic-native SE, wherein the SI can be 
learned from iterative communications between 
intelligent agents, which makes it feasible in the 
cases where SI varies over time. Moreover, the 
communication parties can have the capability of 
contextual reasoning about the semantics in the 
local context of social interactions, which makes 
communication more effi  cient. Hence, it can pro-
mote intelligentization of communication systems 
with high degree of fl exibility and effi  ciency.

In summary, DL-based SE is the most used. 
RL-based SE, while achieving better performance 
than DL-based ones, comes at the cost of huge 
computational resource consumption. Moreover, 
KB-based SE is only validated for image classifi ca-
tion and semantic-native SE remains a theoretical 
proposition currently.

edge-enAbled semcom
In contrast to the classical transmission-before-un-
derstanding communications, the understand-
ing-before-transmission paradigm of SemCom 
requires a shared knowledge background and 
computationally costly operations for SE model 
training and inference. This undoubtedly poses 
new challenges summarized as follows:
• Limited computing power and energy con-

straint of the end devices results in long latency 
in training and updating of the SE model, there-
by degrading communication reliability.

• Comprehensive knowledge sharing among end 
devices to improve an SE model is at the cost 
of bandwidth and privacy. On the other hand, 
incomplete knowledge reduces the generaliza-
tion capabilities of AI-based SE.

• Most SE methods are task-specifi c and trained 
separately, which is far from brain-like cognition 
and is computationally inefficient due to the 
duplication of work.

To address the above challenges, we propose an 
edge-enabled SemCom architecture in this section.

federAted leArnIng enAbled se
We address the first two challenges by integrat-
ing edge intelligence with SemCom. Given the 
powerful computation and caching capabilities of 
the edge servers, the BK storage, and SE model 
training can be performed at the edge. In this 
way, computation and communication latency 
for training (mentioned in the fi rst challenge) can 
be reduced [10]. Meanwhile, the edge server can 
serve as an authoritative intermediary for knowl-
edge sharing, thereby eliminating the need for all 
communication parties to fully share each other’s 
BK [7]. This can reduce communication parties’ 
burden and also enhance their privacy.

We consider a common urban scenario shown 
in Fig. 4a. The end devices are typically clustered 
into diff erent groups according to their associated 
access points or transmission requirements. Then, 

FIGURE 3. General models of main semantic extraction methods [7, 8, 10, 11]: a) System model of 
DL-based SE; b) System model of RL-based SE; c) System model of KB-assisted SE; d) System model of 
semantic-native SE.
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the edge server conducts SE model training, and 
end devices employ well-trained models to perform 
SE. With FL, the trained SE model parameters in 
edge servers can be exchanged directly with other 
edge servers with the identical tasks to accelerate 
the training process. Therefore, the generalization 
performance of the model can be improved in a 
privacy-preserving manner. The key procedures are 
outlined as follows:
Step 1 Edge servers perform the pre-training or 

fi ne-tuning for specifi c SE tasks based on each 
communication group’s shared BK. Model 
parameter exchange and federated aggrega-
tion are performed over separate communi-
cation groups with the same communication 
goals but not a shared knowledge background. 
(Edge server)

Step 2 The derived global models are broad-
cast separately to each communication group. 
(Access point)

Step 3 The source devices generate the raw 
data. The destination devices receive SI. Then, 
the SE model is utilized to encode and decode 
SI. (End device)

Step 4 The destination devices evaluate the 
accuracy of SI during the communications for 
data labeling. (End device)

Step 5 The newly labeled SI and/or corre-
sponding raw data are uploaded to the edge 
servers. (Access point)

Step 6 The edge servers perform the regular 
updates for the knowledge sets according to 
uploaded information and raw data for fi ne-tun-
ing of the SE model. (Edge server)

effIcIent semAntIc eXtrActIon bAsed on 
edge-shArIng knowledge-grAph

In this subsection, we focus on the third challenge. 
Inspired by the KB-assisted SE [7], we propose to 
construct an edge-sharing knowledge graph (KG), 
which stores the underlying relations between 
communication goals and SI for semantic man-
agement to enable computationally-effi  cient SE.

In general, a sophisticated KG heavily relies 
on a large deep learning model and a complete 
knowledge set. Fortunately, this is feasible in the 

framework of edge intelligence, where the KG can 
be cached at the edge servers and the available 
related knowledge sets can be accessed at reduced 
link distances. Although the KG construction is also 
a computation-intensive task, the structure of KG 
is much more fixed than that of having to retrain 
separate SE models for various tasks. Once the KG 
is constructed, it can be cached at the edge servers 
to facilitate the computation-effi  cient SE.

As an illustration, we consider the use case 
of KG toward SemCom in intelligent transporta-
tion networks. Since a well-trained convolutional 
neural network (CNN) for multiple object iden-
tification embeds all the feature maps related to 
diff erent objects, the gradients of the output of the 
CNN with respect to feature maps can be treated 
as the importance weights of the feature map to 
different objects [7]. Accordingly, the KG can be 
established by storing the importance weights of 
all feature maps for the tasks with diff erent identi-
fi cation targets [7]. In this sense, the SE for single 
object identifi cation can be executed according to 
the important feature map, thereby avoiding the 
need for specialized training and also removing 
redundant details from the image for more effi  cient 
transmission. Meanwhile, although autonomous 
vehicles and unmanned aerial vehicles (UAVs) 
work in distinct environments and have unique task 
specifi cations, they also share several similar char-
acteristics and communication goals such as colli-
sion avoidance and path planning. Therefore, KG 
and transfer learning techniques (for the initializa-
tion of SE model parameters) can be applied to the 
training of SE to save much computation resources 
of vehicles and UAVs.

reseArch dIrectIons
While the above-mentioned network architec-
ture can facilitate the development of efficient 
SemCom, there are still open issues to be solved 
before it can be implemented in practice, some of 
which are highlighted below.

Interpretability and Explainability of SE: As 
unexpected information often appears in commu-
nications, the black-box nature of SE methods hin-
ders its implementation. Hence, interpretability in 

FIGURE 4. System models for the edge-enabled SemCom and Semantic-aware edge intelligence: a) architec-
ture for edge-enabled SemCom; b) example structure of collaborative deep reinforcement learning [12].
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SE needs to be studied to associate possible causes 
and results and to guide improvements to the SE 
model. Meanwhile, explainability in SE can identify 
the SI hidden in deep nets, which paves the way to 
the KG-based efficient SE across multiple modal-
ities and tasks described above. However, most 
existing SE methods are not explainable.

Semantic-Noise Based Privacy Preserving: For 
the communication groups with similar BK and 
communication goals, eavesdropping becomes 
easy. Considering the success of covert commu-
nication in which artificial noise is introduced for 
secure wireless transmissions, artificially increasing 
the mismatch to generate semantic noise may also 
serve as a potential method to enable secure Sem-
Com.

Variable Length Semantic Encoding: Existing 
works merely consider the dynamic channel gains 
in SE without the concern of resource constraints. 
However, in a multi-user scenario, the fluctua-
tion in resources, such as available spectrum and 
transmit power, can have a non-negligible impact 
on the SemCom performance. How to achieve 
variable-length semantic encoding to cope with 
dynamic network resources remains an open issue.

Semantic-Aware Edge Intelligence
As depicted earlier, more intelligent agents have 
to been deployed for edge orchestration in the 
SemCom context. Along with this, the bandwidth 
and energy consumption caused by the informa-
tion interaction among intelligent agents becomes 
exacerbated. To this end, in this section, we dis-
cuss the potential of semantic awareness for the 
performance enhancement of edge intelligence 
with limited energy and bandwidth resources.

Semantic-Aware Intelligent Agent
The ever-increasing complexity of tasks in smart 
systems, such as autonomous driving, calls for the 
intelligent agents with an ability to learn adaptive-
ly based on their own experience. DRL with the 
capability of trial-and-error search has conceived 
seen as a promising method. However, due to 
the limited training data, which fails to represent 
the complex real-world environment, the monot-
onous experience induces overfitting issues, long 
convergence time, and sub-optimal performance 
of the DRL model. To this end, collaborative DRL 
(CDRL) is proposed to generalize the model 
experience by exchanging their model parameters 
or policies (Fig. 4b).

In real-world applications of CDRL, not all 
source agents can be selected for cooperative train-
ing due to the limited bandwidth. Since different 
agents have specialized environments, tasks, and 
action spaces, a general metric is required to eval-
uate the effectiveness of source agents in enhanc-
ing the learning performance of the target agent. 
The likelihood of a source agent being selected is 
only positively correlated with its structural similar-
ity to the target agent, such as the cosine similarity 
between the agents’ model parameters.

However, the lower structural similarity does 
not necessarily mean a negative collaboration [12], 
and agents with similar model structures may not 
perform a similar task. To this end, the authors in 
[12] further integrate semantic relatedness into the 
metric design for source agent selection in CDRL, 
where semantic relatedness is defined as the aver-

age return value received by the source agent from 
a target environment in limited training episodes. 
From the results in [12], using the same bandwidth, 
the average return of the DRL agents is improved 
when the semantic relatedness is considered, up to 
83 percent higher than the baseline methods.

Semantic-Aware Distributed Deep Learning at  
Wireless Edge Networks

A drawback of CDRL and distributed deep learn-
ing is the high communication overheads incurred 
for exchanging model parameters. Therefore, 
finding an efficient way to compress the model 
parameters is essential for the implementation of 
edge intelligence.

Gradient sparsification and model parameter 
pruning are the two common methods for model 
compression, where a subset of the original model 
parameters is extracted considering the seman-
tics or importance of the parameters for model 
accuracy and convergence speed. For example, 
in [13], gradient sparsification is adopted to com-
press the model at the transmitter by setting all but 
k elements with the highest magnitudes of entries 
to zero. Since only the positions of the non-zero 
elements are to be sent, the receiver can recover 
the received data in a more reliable manner with 
advanced noisy measurements. In [14], an adap-
tive model pruning method is employed for drop-
ping a fraction of the model parameters to reduce 
the communication overheads in FL, where the 
importance of the model parameters are measured 
by their contribution to the future training.

Research Directions
Below, we highlight the open challenges for the 
SemCom enabled edge intelligence.

DL-Based SE for Task Similarity: Although the 
proposed semantic relatedness metric in [12] can 
enhance the learning performance, the extra train-
ing steps to obtain the return value greatly reduc-
es the system efficiency. Furthermore, it remains 
unclear how the number of the extra training steps 
is determined, thereby limiting the scalability of 
this hand-crafted method. For future works, the 
semantic relatedness between the agents can be 
extracted based on DL. The deep learning network 
can take the model parameters as input and output 
embeddings as the semantic representations. The 
network can be trained by minimizing the similarity 
between the output embeddings of different tasks, 
and maximizing the similarity of the output embed-
dings of the similar tasks. In this way, the semantic 
representation can be extracted to calculate the 
task similarity between the agents.

Semantic Compression of Model Parame-
ters: The existing model compression methods 
often require the setting of hyperparameters, for 
example, degree of gradients sparsity. However, 
identifying the optimal values for the hyperpa-
rameters could be computationally inefficient. 
Inspired by the semantic encoder/decoder struc-
ture in [10], which shows superiority in transmis-
sion efficiency and noise tolerance compared 
to conventional source coding, future works 
can adopt semantic-aware model parameter 
exchange between the end devices. Specifically, 
it consists of five modules similar to the struc-
ture in [10]: semantic encoder, channel encoder, 
channel, channel decoder, and semantic decod-

In real-world applica-
tions of CDRL, not all 
source agents can be 
selected for cooper-
ative training due to 

the limited bandwidth. 
Since different agents 

have specialized envi-
ronments, tasks, and 

action spaces, a general 
metric is required to 

evaluate the effective-
ness of source agents in 
enhancing the learning 

performance of the tar-
get agent. 
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er. Differently, the semantic encoder and decod-
er are for extracting the essential information at 
the transmitter and reconstructing the full model 
parameters at the receiver. 

Case Study: Resource Allocation for the  
Convergence of SemCom and  

Edge Intelligence
To facilitate the convergence of SemCom and 
edge intelligence, it is necessary to redesign the 
resource allocation policies. The reason is that 
while classical communication systems aim to 
improve communication efficiency in terms of 
reducing the BER or SER, SemCom aims to trans-
mit the data relevant to the transmission goal. In 
other words, most existing resource allocation 
frameworks are designed to maximize throughput 
without considering the semantic importance of 
the bit flow, especially from different users. More-
over, an edge-enabled SemCom system will have 
to involve entities with conflicting goals. For exam-
ple, the transmitting end user aims to maximize 
the efficiency of the SE model while minimizing 
computation cost, whereas the edge server that 
charges the end user for its services aims to max-
imize revenue while reducing operational costs.

As a case study, we propose a system model in 
which energy-constrained IoT devices harvest the 
energy wirelessly for text transmission [15]. We 
implement all the experiments with PyTorch librar-
ies to ensure the reproducibility on other machines. 
We train and test the semantic model on NVIDIA 
Tesla K80 Graphics Processing Unit. Different from 
existing studies that maximize the bit transmission 
rate, our proposed framework aims to maximize 
the semantic performance of the system. We con-
sider a wireless-powered communication network 
where there are a hybrid access point (HAP) and 
multiple wireless-powered IoT devices. The IoT 
devices are equipped with a semantic encoder/
decoder to encode/decode SI from text data. For 
example, SI of a sentence with 32 words is encod-
ed as a 2-dimensional matrix with size 32  16, 
where 16 is the number of output dimensions of 
the semantic features. As suggested previously, this 
is achieved through utilizing the trained SE models 
cached on edge servers.

In the system (Fig. 5a), the HAP is considered to 
transmit energy to only one IoT device at a specific 
time. To decide the energy allocation, an auction 

mechanism is proposed where the IoT devices will 
bid for the energy, and the HAP will determine the 
winner and price. As the received energy is limit-
ed, some IoT devices need to reduce the output 
feature dimension to fit the energy budget. The 
sentence similarity and BLEU score under differ-
ent output dimensions are shown in Fig. 5b. The 
number of bits that the devices can send upon 
receiving the energy is first obtained. Then, the IoT 
devices will adjust the output dimension to fit the 
data budget. As the objective of the transmission is 
to transfer SI, the IoT devices have more incentive 
to bid higher if they can achieve better semantic 
performance. The bids are derived from the sen-
tence similarity and BLEU score (discussed in Table 
1). In general, the higher the sentence similarity 
and BLEU score, the higher the bid submitted by 
the devices.

The winner and price are determined by a 
DL-based auction mechanism to maximize the 
revenue of the HAP. As shown in Fig. 5c, the 
DL-based auction mechanism achieves higher rev-
enue as compared to the traditional Second-Price 
Auction in which the highest bidder wins the 
energy allocation and pays the price of the sec-
ond-highest bidder. By maximizing the revenue 
of the access point, the price paid by the winning 
IoT device is also maximized. Hence, the energy is 
delivered to the device that values it the most (pay 
the maximized price) to ensure effective SemCom, 
all while fulfilling the desired properties of individ-
ual rationality and incentive compatibility for the 
auction. In the future, we can explore the semantic 
aware resource allocations for more data types, for 
example, image, video, and speech signal.

Conclusion
In this article, we first provided a tutorial on 
SemCom. We discussed the SE techniques and 
performance indicators that vary from the CIT. 
Then, we motivated the edge-driven SemCom 
and the SemCom-driven edge, highlighting how 
the component of the two technologies can play 
an instrumental role toward the efficient intelli-
gentization of future networks. We also discussed 
open research issues, as well as provided a case 
study of semantic-aware resource allocation.
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