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1 “Shannon limit” here refers
to the wellkknown formula

C = Blog (1 +7), where B
represents the bandwidth,

Y represents signal-to-noise
ratio, and C is the theoretical
tightest upper bound on the
information rate that can be
communicated at an arbitrari-
ly low error rate for Gaussian
noise channels.
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ABSTRACT

The development of emerging applications, such
as autonomous transportation systems, is expect-
ed to result in an explosive growth in mobile data
traffic. As the available spectrum resource becomes
more and more scarce, there is a growing need
for a paradigm shift from Shannon’s Classical Infor-
mation Theory (CIT) to semantic communication
(SemCom). Specifically, the former adopts a “trans-
mit-before-understanding” approach while the lat-
ter leverages artificial intelligence (Al) techniques
to “understand-before-transmit,” thereby alleviating
bandwidth pressure by reducing the amount of data
to be exchanged without negating the semantic
effectiveness of the transmitted symbols. However,
the semantic extraction (SE) procedure incurs costly
computation and storage overheads. In this article,
we introduce an edge-driven training, maintenance,
and execution of SE. We further investigate how
edge intelligence can be enhanced with SemCom
through improving the generalization capabilities of
intelligent agents at lower computation overheads
and reducing the communication overhead of infor-
mation exchange. Finally, we present a case study
involving semantic-aware resource optimization for
the wireless powered Internet of Things (loT).

INTRODUCTION

With the ongoing convergence of information and
communication technologies (ICTs) and artificial intel-
ligence (Al), the “Internet of Everything” has been
considered as one of the key 6G visions, wherein
semantic communication (SemCom) and edge intelli-
gence are expected to be two key enablers [1].
SemCom is widely regarded as a promising
communication paradigm to breakout the “Shan-
non’s trap.” In fact, SemCom is not an entirely new
concept. Just after the introduction of Shannon’s
theorem, Weaver and Shannon went on to identify
three levels of problems within the broad subject
of communication [2]:
+ Technical level: How accurately can the symbols
of communication be transmitted?
+ Semantic level: How precisely do the transmit-
ted symbols convey the desired meaning?
* Effectiveness level: How effectively does
the received meaning affect conduct in the
desired way?

Shannon’s Classical Information Theory (CIT) [3]
focuses only on the technical level and achieves
success in deriving a rigorous mathematical theo-
ry of communication based on probabilistic mod-
els, wherein the information is defined as what
can be used to remove uncertainty and quantified
based on the probability of its occurrence from
the given source.

However, the achieved transmission rates in the
CIT-driven conventional communication systems
are approaching the Shannon limit" and the avail-
able spectrum resources are becoming increas-
ingly scarce. Moreover, the rapid development of
emerging applications, for example, autonomous
transportation systems, leads to a never-ending
growth in mobile data traffic. In this regard, Sem-
Com has returned to relevance. Empowered by Al
technologies such as computer vision (CV) and nat-
ural language processing (NLP), end devices such
as sensor nodes or smartphones may eventually be
equipped with human-like reasoning capabilities.
Accordingly, semantic extraction (SE) can be inte-
grated into the communication model to achieve
SemCom. SemCom, thus, allows only the infor-
mation of interest to the receiver for transmission,
rather than raw data. As a result, bandwidth con-
sumption can be reduced substantially and privacy
preservation can be enhanced through avoiding
entire data to be exchanged. However, there are
still some factors hindering the implementation of
SemCom. For instance, the training process of SE
models requires significant computing and storage
resources, thereby impeding the scalable imple-
mentation of SemCom on resource-constrained
end devices. Furthermore, in building a common
knowledge base toward improving the generaliza-
tion capabilities of SE models, other issues such as
privacy loss may arise.

Fortunately, edge intelligence is promising to
facilitate the scalable implementation of SemCom
systems. The precursor to edge intelligence is edge
computing, which moves part of the service-spe-
cific processing and data storage from the cen-
tral cloud to the edge of the network closer to the
source of data. In 5G networks, edge computing
has already made significant achievements in terms
of improving performance, and supporting new
services and functions. Empowered by Al technol-
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ogies in 6G, edge intelligence aims to offer more
powerful computational processing and massive
data acquisition at the edge networks to achieve
the dynamic and adaptive edge maintenance and
management [4]. Therefore, edge intelligence can
provide a good basis for offloading SE model train-
ing and knowledge storage.

On the other hand, to realize the 6G vision of
ubiquitous Al, distributed learning and inference
have become instrumental to contribute toward
the intelligentization of edge networks [5]. How-
ever, the data-driven approach implies that Al-en-
abled agents have to incur costly communication
and computation overheads, which poses challeng-
es for the communication network, especially amid
the uncertain wireless environment and limited
wireless resources. In this regard, SemCom can be
seen as a key enabler of edge intelligence.

Our contributions in this article are as follows:

+ We introduce a general system model for Sem-
Com involving the three communication levels
foreseen by Shannon and Weaver. We then
discuss typical semantic metrics and key SE
techniques.

* To address the costly implementation over-
heads of training, maintaining, and executing
SE models for SemCom, we introduce edge
enabled SemCom by studying a Federated
Learning (FL) enabled SE system model and
edge-sharing knowledge graph for the seman-
tic management. We also introduce the role
of SemCom in training intelligent agents and
empowering communication-efficient distribut-
ed machine learning (ML).

+ We insightfully discuss the open issues and
future research directions that are at the inter-
section of Al and communications toward Sem-
Com, a key component of 6G networks.

+ We provide a case study of semantic-aware
resource allocation in wireless powered loT.
Different from the CIT-driven loT, our study
utilizes an Al-driven allocation mechanism
to derive the resource allocation policy that
maximizes semantic performance across the
network.

PRELIMINARIES

SemCom differs from traditional Shannon com-
munication in that it incorporates human-like
“understanding” and “inference” into the encod-
ing and decoding of communication data, no
longer pursuing exact data replication. In this
section, we provide a brief introduction of the
SemCom framework and typical semantic met-
rics. We then discuss the key SE techniques in
the existing works.

SEMCOM FRAMEWORK

Different from the content-blind classical commu-
nication systems, what matters in SemCom design
is the accuracy of semantic content, instead of
the average information associated with the pos-
sibilities of source data that can be emitted by
a source [6]. As such, the main changes in the
SemCom system lie in the data processing before
sending and after receiving. (Fig. 1). Before
encoding, the source data goes through the
semantic representation module, which can be
seen as the “understanding-before-transmission”
process, during which the redundant information

Effectiveness level Goal of Semantic extraction
ST ommunication . N 7‘\\

;
|
|
i Background
|
i

knowledge knowledge

Semantic level

|
Background :
|
|

Sourc 1 S emantic
[«Elcl representation

#) S emantic
encoding

S emantic

channel decoding

6 Channel

encoding decoding

Technical level

FIGURE 1. SemCom model [2, 7].

is removed. Then, the extracted relevant infor-
mation goes to the semantic encoding module.
In general SemCom scenarios, semantic decod-
ing is the inverse process of encoding, which are
jointly determined based on the Al technologies
and their prior knowledge. For brevity, we refer
to both semantic encoding and decoding as SE,
and semantic encoding (decoding) in the subse-
quent text is considered to be integrated with the
semantic representation (interpretation) module.

As with human conversation, effective con-
versation requires common knowledge of each
other’s language and communication context. In
SemCom, the background knowledge (BK) of the
communication parties has to be shared in real
time to ensure that the processes of understand-
ing and inference can be well-matched for all the
source data. If the BK fails to match, semantic noise
is generated, thereby resulting in performance deg-
radation even in the absence of syntactic errors
during the physical transmission.

Moreover, in some cases wherein the goal of
communication may change, all possibilities for
communication goals should be included in the
BK and the communication goal should instruct SE
to filter out irrelevant semantic information (SI) in
each transmission.

SEMANTIC METRICS

The design of network performance metrics has
long been a nucleus concern in network design
and optimization. As the study on SemCom is
still in its early stage, most semantic metrics are
derived from NLP (Table 1). Different from bit-er-
ror rate (BER) or symbol-error rate (SER) in clas-
sical communication systems, SemCom avoids
treating packets equally, and measure the differ-
ences in the meaning conveyed by the recovered
sentence and transmitted sentence. Besides such
error-based metrics, some other metrics focus on
timeliness. Age of information (Aol)-based metrics
highlight the importance of data packet freshness,
which allows scheduling schemes based on Aol
minimization to filter out the irrelevant packets
given the bandwidth constraints. By jointly consid-
ering the accuracy and timeliness of information,
the authors in [9] introduce the metric of age of
incorrect information (Aoll) to SemCom, which
measures the network performance by looking at
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Semantic metrics

Advantages

Drawbacks

Bilingual evaluation
understudy (BLEU)

Consensus based
Image Description
Evaluation (CIDEr)

Sentence similarity

BLEU is a method for automatic evaluation for machine
translation. It is used to compare word groups with
different size of the candidate with that of the reference
translation and count the number of matches.

CIDEr was proposed as an automatic consensus
metric of image description quality in, which was
originally used to measure the similarity of a generated
sentence against a set of ground truth sentences
written by humans. It can also be used to evaluate the
communication performance for text transmission.

Sentence similarity is calculated as the cosine similarity
of the semantic features extracted bidirectional encoder
representations from transformers (BERT). BERT is a
fine-tuned word representation model, which employs a
huge pre-trained model including billions of parameters
used for extracting the SI.

TABLE 1. Some semantic metrics derived from NLP [8].

It considers the linguistic laws,
such as that semantically
consistent words usually come
together in a given corpus.

Compared to BLEU, it does
not evaluate semantic similarity
on the basis of a reference
sentence, but a set of sentences
with the same meaning.

The Slin this metric is viewed
from a sentence level owing

to the sensitivity of BERT to
polysemy, (e.g., word'mouse” in
biology and machine).

It only calculates the differences of
words between two sentences and
has no insight into the meaning of
the whole sentence.

Similar to BLUE, it is also based on
the comparisons between word
groups, and the semantic similarity
can only be captured at the word
level.

The pre-trained BERT model
introduces much resource
consumption in the training
process and makes it hard to
generalize in other tasks.

Raw source data

Semantic Recovered data

communications

+858

Main types of semantic metrics
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Error-based metrics use the quantitative
representation of the difference between

x,and %, (e.g., BLEU,CIDEr) as a network
performance evaluation, and measure
how precisely the recovered data

0

t 1,
Error penalty function

t conveys the intended meaning.

Aol-based metrics are tailor-made for
the monitoring systems,which captures
how unfresh the source data is at the
transmitter. With the guidance of Aol
metric, the fresh data will be given more
f importance and transmitted with priority.

Aoll-based metrics combine both above
metrics, which quantify the impact of
the error lasting for different duration for
system performance. Intuitively, the error
of a long burst tend to be far more

0 4 3
Aoll penalty function

h ! severe than a instantaneous burst.

FIGURE 2. Some SemCom examples and metrics, where x, denotes the transmitted information, and &, denotes the estimated informa-
tion inferred from the transmission [9].

a bigger picture of the packet’s role in achieving
the overall communication goal.

Moreover, for the cases where the benefits of
some packets to be transmitted are evaluated to
be important for the system objective, the value
of information (Vol) is of more concern than accu-
racy. Hence, the Vol-related metrics can be used
toward goal-oriented communications that capture
the importance, relevance, and priorities of pack-
ets. Some SemCom examples and the three typical
types of metrics are presented in Fig. 2.

SEMANTIC EXTRACTION TECHNIQUES

We now discuss some key SE techniques, the gen-
eral models of which are shown in Fig. 3.

Deep Learning Based SE: With the advancement
of Transformer, squeeze-and-excitation network, and
deep residual network, deep learning (DL) has been
widely employed in SE for text, speech, and image
transmission. DL-based SE aims to enhance the sys-
tem robustness at a low signal-to-noise ratio (SNR)
with a shorter bit-flow. The encoder and decoder
are usually modeled as two separate learnable sec-
tions, and linked through a random channel, which

are trained jointly [10]. During the training process,
the Generative Adversarial Networks (GANs) are
commonly used to model the channel dynamics
and noise. However, as the loss function is gener-
ally required to be differentiable, the common loss
functions such as cross entropy are adopted during
the model training process. This treats the semantic
contribution of data with equal importance, which is
inconsistent with human perception.

Deep Reinforcement Learning Based SE:
Deep Reinforcement Learning (DRL) can integrate
non-differentiable semantic metrics like BLEU into
SE training. In the DRL-based SE for text transmis-
sion in [8], long short-term memory networks are
employed in the encoder and decoder. The state
is defined as the recurrent state of the decoder
and the previously generated words. The transition
between the two adjacent states is determined by
the next generated word, and the action of the
DRL agent is to generate a new word, with the
action space defined by the dictionary dimen-
sion. As the semantic metrics can only be used
as the long-term return in DRL, self-critic training
is employed to address the challenging issue for
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FIGURE 3. General models of main semantic extraction methods [7, 8, 10, 11]: a) System model of
DL-based SE; b) System model of RL-based SE; c) System model of KB-assisted SE; d) System model of

semantic-native SE.

identifying the intermediate rewards, that is, the
impact of each step on the semantics of the whole
sentence. Moreover, for other non-sequential task,
the decoding process needs to be transformed into
a recurrent procedure beforehand.

Knowledge Base Assisted SE: Knowledge Base
(KB) is a special database for knowledge man-
agement, which is widely used in automated Al
systems to store the data with formal represen-
tation allowing for inference. The KB-assisted SE
integrates the KB into the encoder and decoder,
aiming to extract more Sl related to the commu-
nication task for a given transmission bit limitation
[7]. Specifically, the KB in Semcom is composed
of source information, communication tasks, and
the possible ways of reasoning that can be under-
stood, recognized, and learned by communica-
tion participants. During the SE process, the KB is
employed to quantify the level of relevance of Sl
for different communication tasks and instruct SE
to capture the Sl that is closely related to the task
in each transmission. Meanwhile, as KB-assist SE
is in an end-to-end manner, the KBs at both sides
need to be kept in synchronization.

Semantic-Native SE: In the aforementioned
methods, the Sl is fixed. In [11], the authors pro-
pose a semantic-native SE, wherein the SI can be
learned from iterative communications between
intelligent agents, which makes it feasible in the
cases where Sl varies over time. Moreover, the
communication parties can have the capability of
contextual reasoning about the semantics in the
local context of social interactions, which makes
communication more efficient. Hence, it can pro-
mote intelligentization of communication systems
with high degree of flexibility and efficiency.

In summary, DL-based SE is the most used.
RL-based SE, while achieving better performance
than DL-based ones, comes at the cost of huge
computational resource consumption. Moreover,
KB-based SE is only validated for image classifica-
tion and semantic-native SE remains a theoretical
proposition currently.

EDGE-ENABLED SEMCOM

In contrast to the classical transmission-before-un-
derstanding communications, the understand-
ing-before-transmission paradigm of SemCom
requires a shared knowledge background and
computationally costly operations for SE model
training and inference. This undoubtedly poses
new challenges summarized as follows:

+ Limited computing power and energy con-
straint of the end devices results in long latency
in training and updating of the SE model, there-
by degrading communication reliability.

« Comprehensive knowledge sharing among end
devices to improve an SE model is at the cost
of bandwidth and privacy. On the other hand,
incomplete knowledge reduces the generaliza-
tion capabilities of Al-based SE.

+ Most SE methods are task-specific and trained
separately, which is far from brain-like cognition
and is computationally inefficient due to the
duplication of work.

To address the above challenges, we propose an

edge-enabled SemCom architecture in this section.

FEDERATED LEARNING ENABLED SE

We address the first two challenges by integrat-
ing edge intelligence with SemCom. Given the
powerful computation and caching capabilities of
the edge servers, the BK storage, and SE model
training can be performed at the edge. In this
way, computation and communication latency
for training (mentioned in the first challenge) can
be reduced [10]. Meanwhile, the edge server can
serve as an authoritative intermediary for knowl-
edge sharing, thereby eliminating the need for all
communication parties to fully share each other’s
BK [7]. This can reduce communication parties’
burden and also enhance their privacy.

We consider a common urban scenario shown
in Fig. 4a. The end devices are typically clustered
into different groups according to their associated
access points or transmission requirements. Then,

Knowledge Base (KB) is
a special database for
knowledge manage-
ment, which is widely
used in automated Al
systems to store the
data with formal repre-
sentation allowing for
inference.
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Although the KG con-
struction is also a com-
putation-intensive task,
the structure of KG is
much more fixed than
that of having to retrain
separate SE models for
various tasks.
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FIGURE 4. System models for the edge-enabled SemCom and Semantic-aware edge intelligence: a) architec-
ture for edge-enabled SemCom; b) example structure of collaborative deep reinforcement learning [12].

the edge server conducts SE model training, and

end devices employ well-trained models to perform

SE. With FL, the trained SE model parameters in

edge servers can be exchanged directly with other

edge servers with the identical tasks to accelerate
the training process. Therefore, the generalization

performance of the model can be improved in a

privacy-preserving manner. The key procedures are

outlined as follows:

Step 1 Edge servers perform the pre-training or
fine-tuning for specific SE tasks based on each
communication group’s shared BK. Model
parameter exchange and federated aggrega-
tion are performed over separate communi-
cation groups with the same communication
goals but not a shared knowledge background.
(Edge server)

Step 2 The derived global models are broad-
cast separately to each communication group.
(Access point)

Step 3 The source devices generate the raw
data. The destination devices receive SI. Then,
the SE model is utilized to encode and decode
SI. (End device)

Step 4 The destination devices evaluate the
accuracy of SI during the communications for
data labeling. (End device)

Step 5 The newly labeled SI and/or corre-
sponding raw data are uploaded to the edge
servers. (Access point)

Step 6 The edge servers perform the regular
updates for the knowledge sets according to
uploaded information and raw data for fine-tun-
ing of the SE model. (Edge server)

EFFICIENT SEMANTIC EXTRACTION BASED ON
EDGE-SHARING KNOWLEDGE-GRAPH

In this subsection, we focus on the third challenge.
Inspired by the KB-assisted SE [7], we propose to
construct an edge-sharing knowledge graph (KG),
which stores the underlying relations between
communication goals and SI for semantic man-
agement to enable computationally-efficient SE.

In general, a sophisticated KG heavily relies
on a large deep learning model and a complete
knowledge set. Fortunately, this is feasible in the

framework of edge intelligence, where the KG can
be cached at the edge servers and the available
related knowledge sets can be accessed at reduced
link distances. Although the KG construction is also
a computation-intensive task, the structure of KG
is much more fixed than that of having to retrain
separate SE models for various tasks. Once the KG
is constructed, it can be cached at the edge servers
to facilitate the computation-efficient SE.

As an illustration, we consider the use case
of KG toward SemCom in intelligent transporta-
tion networks. Since a well-trained convolutional
neural network (CNN) for multiple object iden-
tification embeds all the feature maps related to
different objects, the gradients of the output of the
CNN with respect to feature maps can be treated
as the importance weights of the feature map to
different objects [7]. Accordingly, the KG can be
established by storing the importance weights of
all feature maps for the tasks with different identi-
fication targets [7]. In this sense, the SE for single
object identification can be executed according to
the important feature map, thereby avoiding the
need for specialized training and also removing
redundant details from the image for more efficient
transmission. Meanwhile, although autonomous
vehicles and unmanned aerial vehicles (UAVs)
work in distinct environments and have unique task
specifications, they also share several similar char-
acteristics and communication goals such as colli-
sion avoidance and path planning. Therefore, KG
and transfer learning techniques (for the initializa-
tion of SE model parameters) can be applied to the
training of SE to save much computation resources
of vehicles and UAVs.

RESEARCH DIRECTIONS

While the above-mentioned network architec-
ture can facilitate the development of efficient
SemCom, there are still open issues to be solved
before it can be implemented in practice, some of
which are highlighted below.

Interpretability and Explainability of SE: As
unexpected information often appears in commu-
nications, the black-box nature of SE methods hin-
ders its implementation. Hence, interpretability in

3
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SE needs to be studied to associate possible causes
and results and to guide improvements to the SE
model. Meanwhile, explainability in SE can identify
the SI hidden in deep nets, which paves the way to
the KG-based efficient SE across multiple modal-
ities and tasks described above. However, most
existing SE methods are not explainable.

Semantic-Noise Based Privacy Preserving: For
the communication groups with similar BK and
communication goals, eavesdropping becomes
easy. Considering the success of covert commu-
nication in which artificial noise is introduced for
secure wireless transmissions, artificially increasing
the mismatch to generate semantic noise may also
serve as a potential method to enable secure Sem-
Com.

Variable Length Semantic Encoding: Existing
works merely consider the dynamic channel gains
in SE without the concern of resource constraints.
However, in a multi-user scenario, the fluctua-
tion in resources, such as available spectrum and
transmit power, can have a non-negligible impact
on the SemCom performance. How to achieve
variable-length semantic encoding to cope with
dynamic network resources remains an open issue.

SEMANTIC-AWARE EDGE INTELLIGENCE

As depicted earlier, more intelligent agents have
to been deployed for edge orchestration in the
SemCom context. Along with this, the bandwidth
and energy consumption caused by the informa-
tion interaction among intelligent agents becomes
exacerbated. To this end, in this section, we dis-
cuss the potential of semantic awareness for the
performance enhancement of edge intelligence
with limited energy and bandwidth resources.

SEMANTIC-AWARE INTELLIGENT AGENT

The ever-increasing complexity of tasks in smart
systems, such as autonomous driving, calls for the
intelligent agents with an ability to learn adaptive-
ly based on their own experience. DRL with the
capability of trial-and-error search has conceived
seen as a promising method. However, due to
the limited training data, which fails to represent
the complex real-world environment, the monot-
onous experience induces overfitting issues, long
convergence time, and sub-optimal performance
of the DRL model. To this end, collaborative DRL
(CDRL) is proposed to generalize the model
experience by exchanging their model parameters
or policies (Fig. 4b).

In real-world applications of CDRL, not all
source agents can be selected for cooperative train-
ing due to the limited bandwidth. Since different
agents have specialized environments, tasks, and
action spaces, a general metric is required to eval-
uate the effectiveness of source agents in enhanc-
ing the learning performance of the target agent.
The likelihood of a source agent being selected is
only positively correlated with its structural similar-
ity to the target agent, such as the cosine similarity
between the agents’ model parameters.

However, the lower structural similarity does
not necessarily mean a negative collaboration [12],
and agents with similar model structures may not
perform a similar task. To this end, the authors in
[12] further integrate semantic relatedness into the
metric design for source agent selection in CDRL,
where semantic relatedness is defined as the aver-

age return value received by the source agent from
a target environment in limited training episodes.
From the results in [12], using the same bandwidth,
the average return of the DRL agents is improved
when the semantic relatedness is considered, up to
83 percent higher than the baseline methods.

SEMANTIC-AWARE DISTRIBUTED DEEP LEARNING AT

WIRELESS EDGE NETWORKS
A drawback of CDRL and distributed deep learn-
ing is the high communication overheads incurred
for exchanging model parameters. Therefore,
finding an efficient way to compress the model
parameters is essential for the implementation of
edge intelligence.

Gradient sparsification and model parameter
pruning are the two common methods for model
compression, where a subset of the original model
parameters is extracted considering the seman-
tics or importance of the parameters for model
accuracy and convergence speed. For example,
n [13], gradient sparsification is adopted to com-
press the model at the transmitter by setting all but
k elements with the highest magnitudes of entries
to zero. Since only the positions of the non-zero
elements are to be sent, the receiver can recover
the received data in a more reliable manner with
advanced noisy measurements. In [14], an adap-
tive model pruning method is employed for drop-
ping a fraction of the model parameters to reduce
the communication overheads in FL, where the
importance of the model parameters are measured
by their contribution to the future training.

RESEARCH DIRECTIONS

Below, we highlight the open challenges for the
SemCom enabled edge intelligence.

DL-Based SE for Task Similarity: Although the
proposed semantic relatedness metric in [12] can
enhance the learning performance, the extra train-
ing steps to obtain the return value greatly reduc-
es the system efficiency. Furthermore, it remains
unclear how the number of the extra training steps
is determined, thereby limiting the scalability of
this hand-crafted method. For future works, the
semantic relatedness between the agents can be
extracted based on DL. The deep learning network
can take the model parameters as input and output
embeddings as the semantic representations. The
network can be trained by minimizing the similarity
between the output embeddings of different tasks,
and maximizing the similarity of the output embed-
dings of the similar tasks. In this way, the semantic
representation can be extracted to calculate the
task similarity between the agents.

Semantic Compression of Model Parame-
ters: The existing model compression methods
often require the setting of hyperparameters, for
example, degree of gradients sparsity. However,
identifying the optimal values for the hyperpa-
rameters could be computationally inefficient.
Inspired by the semantic encoder/decoder struc-
ture in [10], which shows superiority in transmis-
sion efficiency and noise tolerance compared
to conventional source coding, future works
can adopt semantic-aware model parameter
exchange between the end devices. Specifically,
it consists of five modules similar to the struc-
ture in [10]: semantic encoder, channel encoder,
channel, channel decoder, and semantic decod-

In real-world applica-
tions of CDRL, not all
source agents can be
selected for cooper-
ative training due to
the limited bandwidth.
Since different agents
have specialized envi-
ronments, tasks, and
action spaces, a general
metric is required to
evaluate the effective-
ness of source agents in
enhancing the learning
performance of the tar-
get agent.
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FIGURE 5. System model and experiment results of the case study: a) loT devices bid for the energy from Hybrid Access Point; b)

BLEU score and sentence similarity; ¢) Revenue of Hybrid Access Point.

er. Differently, the semantic encoder and decod-
er are for extracting the essential information at
the transmitter and reconstructing the full model
parameters at the receiver.

CASE STUDY: RESOURCE ALLOCATION FOR THE
CONVERGENCE OF SEMCOM AND
EDGE INTELLIGENCE

To facilitate the convergence of SemCom and
edge intelligence, it is necessary to redesign the
resource allocation policies. The reason is that
while classical communication systems aim to
improve communication efficiency in terms of
reducing the BER or SER, SemCom aims to trans-
mit the data relevant to the transmission goal. In
other words, most existing resource allocation
frameworks are designed to maximize throughput
without considering the semantic importance of
the bit flow, especially from different users. More-
over, an edge-enabled SemCom system will have
to involve entities with conflicting goals. For exam-
ple, the transmitting end user aims to maximize
the efficiency of the SE model while minimizing
computation cost, whereas the edge server that
charges the end user for its services aims to max-
imize revenue while reducing operational costs.

As a case study, we propose a system model in
which energy-constrained loT devices harvest the
energy wirelessly for text transmission [15]. We
implement all the experiments with PyTorch librar-
ies to ensure the reproducibility on other machines.
We train and test the semantic model on NVIDIA
Tesla K80 Graphics Processing Unit. Different from
existing studies that maximize the bit transmission
rate, our proposed framework aims to maximize
the semantic performance of the system. We con-
sider a wireless-powered communication network
where there are a hybrid access point (HAP) and
multiple wireless-powered loT devices. The loT
devices are equipped with a semantic encoder/
decoder to encode/decode SI from text data. For
example, Sl of a sentence with 32 words is encod-
ed as a 2-dimensional matrix with size 32 x 16,
where 16 is the number of output dimensions of
the semantic features. As suggested previously, this
is achieved through utilizing the trained SE models
cached on edge servers.

In the system (Fig. 5a), the HAP is considered to
transmit energy to only one loT device at a specific
time. To decide the energy allocation, an auction

mechanism is proposed where the loT devices will
bid for the energy, and the HAP will determine the
winner and price. As the received energy is limit-
ed, some loT devices need to reduce the output
feature dimension to fit the energy budget. The
sentence similarity and BLEU score under differ-
ent output dimensions are shown in Fig. 5b. The
number of bits that the devices can send upon
receiving the energy is first obtained. Then, the loT
devices will adjust the output dimension to fit the
data budget. As the objective of the transmission is
to transfer SI, the loT devices have more incentive
to bid higher if they can achieve better semantic
performance. The bids are derived from the sen-
tence similarity and BLEU score (discussed in Table
1). In general, the higher the sentence similarity
and BLEU score, the higher the bid submitted by
the devices.

The winner and price are determined by a
DL-based auction mechanism to maximize the
revenue of the HAP. As shown in Fig. 5c, the
DL-based auction mechanism achieves higher rev-
enue as compared to the traditional Second-Price
Auction in which the highest bidder wins the
energy allocation and pays the price of the sec-
ond-highest bidder. By maximizing the revenue
of the access point, the price paid by the winning
loT device is also maximized. Hence, the energy is
delivered to the device that values it the most (pay
the maximized price) to ensure effective SemCom,
all while fulfilling the desired properties of individ-
ual rationality and incentive compatibility for the
auction. In the future, we can explore the semantic
aware resource allocations for more data types, for
example, image, video, and speech signal.

CONCLUSION

In this article, we first provided a tutorial on
SemCom. We discussed the SE techniques and
performance indicators that vary from the CIT.
Then, we motivated the edge-driven SemCom
and the SemCom-driven edge, highlighting how
the component of the two technologies can play
an instrumental role toward the efficient intelli-
gentization of future networks. We also discussed
open research issues, as well as provided a case
study of semantic-aware resource allocation.
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