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Abstract—In the era of 6G, with compelling visions of
intelligent transportation systems and digital twins, remote
surveillance is poised to become a ubiquitous practice. Sub-
stantial data volume and frequent updates present challenges
in wireless networks. To address these challenges, we propose
a novel agent-driven generative semantic communication (A-
GSC) framework based on reinforcement learning. In contrast
to the existing research on semantic communication (SemCom),
which mainly focuses on either semantic extraction or semantic
sampling, we seamlessly integrate both by jointly considering the
intrinsic attributes of source information and the contextual infor-
mation regarding the task. Notably, the introduction of generative
artificial intelligence (GAI) enables the independent design of
semantic encoders and decoders. In this work, we develop an
agent-assisted semantic encoder with cross-modality capability,
which can track the semantic changes, channel condition, to per-
form adaptive semantic extraction and sampling. Accordingly,
we design a semantic decoder with both predictive and generative
capabilities, consisting of two tailored modules. Moreover, the
effectiveness of the designed models has been verified using
the UA-DETRAC dataset, demonstrating the performance gains
of the overall A-GSC framework in both energy saving and
reconstruction accuracy.

Index Terms— Semantic communication, video streaming, dif-
fusion model, deep reinforcement learning, semantic sampling.
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I. INTRODUCTION

S HUMAN society advances towards remote man-

agement, coupled with emerging 6G applications like
intelligent transportation system, digital twins and metaverses,
remote surveillance is poised to become a ubiquitous prac-
tice [2]. The substantial data volume and frequent updates
emphasize the challenges of redundancy and rigidity of
information representation and transmission in conventional
communication. Fortunately, 6G ushers in a new era of seman-
tic communication (SemCom) [3], paving the way for more
efficient and streamlined transmission.

In literature, two prominent and non-overlapping branches
of semantic communication research for remote surveillance
have emerged: deep learning (DL)-based semantic compres-
sion and age of information (Aol)-guided semantic sampling.
DL-based SemCom concentrates on each individual data
unit, performing task-agnostic semantic compression first
and then decompression [4]. Meanwhile, Aol-guided Sem-
Com prioritizes information freshness, filtering out outdated
and irrelevant information, which some literature regards
as a form of compression in the femporal domain [5].
To succinctly distinguish these two compression approaches
operating in different domains, hereinafter, we refer to the
latter as semantic sampling and the former as semantic
extraction.

Both branches of research have demonstrated satisfactory
performance and improvements in energy efficiency given con-
strained resources. Nonetheless, it is crucial to emphasize that
these methods merely consider the intrinsic attributes of source
information such as compressibility of high-dimensional infor-
mation and information freshness, which implies that most
SemCom research in remote surveillance primarily focuses on
the semantic level.' In fact, contextual information regarding
a specific task tends to play a more crucial role in reducing
transmission redundancy [7]. Specifically, only goal-related
semantic information is necessary for the destination. Taking
traffic monitoring for instance, transmitting building details
serves no purpose. Similarly, in scenarios like disaster mon-
itoring, the value of intrinsic fresh information may be
limited, while changing or unusual information holds greater
benefits. Overall, integrating contextual information into the
system design empowers SemCom to achieve a heightened
level of effectiveness with higher compression efficiency.

'Shannon and Weaver suggest that SemCom encompasses two distinct
levels [6]: semantic level, which focuses on the meaning of the transmitted
symbols and effectiveness level, which is concerned with the final performance
achieved by communication tasks.
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To the best of our knowledge, there is a notable absence
of research on effectiveness-level SemCom for surveillance
scenarios.

In response to the identified research gap, we propose
a novel modular agent-driven generative SemCom (A-GSC)
framework, which envisions a holistic redesign of informa-
tion processing, sampling, transmission, and reconstruction
processes. By incorporating intrinsic and extrinsic informa-
tion, we achieve a remarkably high level of compression
efficiency by seamlessly cascading semantic extraction and
semantic sampling. This integration produces a synergistic
effect greater than the sum of its parts. An preliminary study
has conceived a semantic change driven generative SemCom
(SCGSC) framework for the remote image update system [1].2
Therein, the introduction of generative artificial intelligence
(GAJ) transforms the semantic encoding into the determination
of the PROMPT. The remarkable explainability of PROMPT
allows for independent design and optimization of semantic
encoders and decoders. Specifically, in SCGSC framework,
the semantic encoder first performs target segmentation to
acquire the relevant semantic information called semantic map,
then collectively considers the semantic change and the Aol to
evaluate the value of information (Vol), and finally completes
the semantic sampling based on thresholds. Correspondingly,
the semantic decoder takes the semantic map and static back-
ground of the remote scene as inputs to reconstruct the scene
based on the diffusion model.

Building on the preliminary framework in [1], this work
focuses on a more realistic scenario. To characterize richer
semantic information with less data, we introduce cross-
modality capabilities into the SemCom design. Additionally,
to present the illusion of real-time updates of remote scenes,
the enhanced A-GSC framework integrates prediction capabil-
ities, allowing the destination to continuously display remote
scenes even during moments without sampling. Three key
improvements distinguish this work from the SCGSC frame-
work, as outlined below:

« Instead of using semantic map, the semantic information
(i.e., layout information) of scenes is transmitted in the
form of text with a lower data volume. In addition to the
vehicle’s location information, which is characterized by
the bounding box, the vehicle type information has also
been integrated into the semantic information.

« Different from the existing Vol based semantic sampling
strategies, we propose that the semantic sampling is
performed by a reinforcement learning (RL) based agent.
This agent dynamically refines the semantic sampling
strategy in response to temporal changes of the source
data, channel conditions, and performance in terms of
semantic accuracy and energy consumption.

o To present the illusion of real-time updates, we integrate
a predictive frame interpolation module at the destination,
enabling a low-complexity real-time prediction based on
historical information and the sampling intervals, when
the updated data from the source is unavailable.

The specific contributions of this work are outlined as follows.

2The preliminary work has been accepted by IEEE WCNC 2024,
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e We develop a modular semantic encoder featuring the
cross modality of semantic extraction and agent-assisted
semantic sampling. To guide agent learning, the Value
of Information (Vol)—determined by both energy con-
sumption and scene reconstruction semantic accuracy—is
treated as the reward. Recognizing the non-linear relation-
ship between prediction deviation and sampling interval,
and aiming to mitigate the impact of the convergence pro-
cess and the communication overhead caused by feedback
rewards, we propose an offline sfochastic policy named
Knowledge-Integrated Soft Actor Critic (K-SAC).

e We design a semantic decoder with both predictive
and generative capabilities. To address the challenges in
existing layout diffusion models, we first transform the
received textual semantic information into visual layout.
Additionally, to reverse semantic encoding, we develop
a diffusion-based generative semantic inference module
controlled by both the visual layout and the local static
scene. This design ensures the fidelity of semantic infor-
mation, while closely resembling a real remote scene.
Moreover, to facilitate semantic sampling with variable
time intervals, we design a customized predictive frame
interpolation module.

o We conduct training and testing for the predictive frame
interpolation and semantic inference modules based on
data from UA-DETRAC [8]. Once trained, these models
function as components of the environment in the RL
paradigm, connected to the source through the seman-
tic sampling agent. The offline policy is trained using
virtual experiences generated from a realistic F com-
posite channel fading model [9]. The adaptability of
the well-trained policy is demonstrated across multiple
scenarios. Finally, we showcase the promising gains in
energy savings and reconstruction accuracy achieved by
the A-GSC framework and analyze the complexity of
training and deployment the framework.

Additionally, it should be noted that, while acknowledging
the challenges of pixel-perfect replication in generative Sem-
Com, such difficulties do not diminish its broad applicability.
In many scenarios, the primary concern is the preservation of
essential semantic information. For example, in parking space
surveillance, the system remains indifferent to particulars like
the color of the vehicle and the dynamic background. Instead,
it exclusively focuses on the vehicle location.

The rest of this paper is organized as follows. In Section II,
we review the state of cutting-edge research in SemCom from
three main branches. Then, in Section III, we briefly introduce
the system model in the considered scenario and outline
the overview of the proposed A-GSC framework. The key
components in the proposed A-GSC framework are presented
in Section IV and Section V. An experimental evaluation is
presented in Section VI, followed by the conclusions of the
study and future works in Section VII. The main symbols have
been summarized in Table I.

II. RELATED WORKS

In this section, we first introduce the development of
two mainstream research directions in SemCom, namely
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TABLE I
SUMMARY OF MAIN NOTATIONS

System Design-Related Symbols

t Index of sensing time interval

St Semantic information for the monitored scene at STI ¢
St Visualized semantic information for STI ¢ received

s} Predicted visualized semantic information for STI ¢

Ly Data size for the semantic information at STI ¢

g (@ Instantaneous (average) channel gain

r Static scene information of the remote scene

Xt Semantic change degree for the monitored scene at STI ¢
P Number of predicted future semantic messages per round
Dy Prediction deviation D; between S; and 51’5

i Timestamp corresponding to the last sampled scence

Dy Penalized prediction deviation D¢ between S¢ and 54

Ay Time interval between STI ¢ and the last semantic sample
E; Energy consumption of the transmission for s; at STI ¢

Diffusion Model-Related Parameters

n Index of denoising step

Xn Noisy data at denoising step n

€n Noise sampled from the standard Gaussian distribution A/ (0, I)

Bn Scale of added noise at each step n

On Qn 1= H?:l (1-8s)

0 Parameters of U-Net model for noise estimation
K-SAC-Related Parameters

S St = [L¢, Xt, Gt]. the state observed by the agent at STI ¢

w Duration of observation window in units of STIs

at at € A =1{0,1}, action performed by the agent at STI ¢

'rtl Reward for performing semantic sampling

r? Reward for not performing semantic sampling

Tt re = r%lat:l + 1‘? (1 —1q,=1), reward obtained at STI ¢

] Parameters for critic networks
o) Parameters for actor network
9 Temperature parameter

H Target entropy

semantic-extraction based and semantic-sampling based Sem-
Com. We then present the vision of a new SemCom paradigm
enabled by GAI, demonstrating how GAI techniques can
effectively combine semantic extraction and sampling. This
sets the foundation for the A-GSC framework proposed in
this work.

A. Semantic Extraction Based SemCom

In the research of SemCom that focuses on semantic
extraction, DL stands out as the predominant technology,
effectively applied to various types of modal data [4]. Beyond
the widely proven efficient semantic compression capability,
recent advancements have expanded its applicability to more
intricate and practical scenarios. For image transmission, the
authors of [10] and [23] introduce an adaptive deep cod-
ing framework within the context of variable code length
enabled DL-based joint source-channel coding (DeepJSCC).
This framework addresses specified target transmission quality
requirements by incorporating an Oracle Network-based PSNR
(peak signal-to-noise ratio) module. Furthermore, the authors
in [11] leverage a learned nonlinear transform function to
establish a temporally adaptive entropy model for customizing
DeepJSCC for video. Additionally, addressing specific cases,
the authors of [12] and [13] propose enhanced DeepJSCC
frameworks for SemCom systems with task-unaware transmit-
ters and those with multiple access, respectively.

2235

Despite these advancements, all DeepJSCC frameworks
are trained in an end-to-end manner. The non-explainability
hinders the semantic information to be interpreted or manip-
ulated as intended, e.g., the semantic sampling as discussed
in Section II-B. Moreover, the most crucial point is that
DeepJSCC only shows significant performance advantages
in analog transmissions [24], and its effectiveness heavily
depends on the match between the actual and training channel
environment. These limitations restrict its effectiveness to
proximity single-hop links without relay forwarding, making it
difficult to apply in the remote monitoring scenarios that may
involve the core network and multi-hop forwarding. To tackle
these challenges, some researchers employ knowledge graphs
(KG) as semantic information containers, performing semantic
encoding and decoding based on KG generation, KG embed-
ding, and KG embedding reasoning [25], [26]. However, the
widespread adoption and advancement of this approach are
hindered by its high computational complexity.

B. Semantic Sampling Based SemCom

Replacing the metric of delay with Age of Information
(Aol) in network optimization signifies a pivotal initial step
in the transition from conventional communication to semantic
communication (SemCom). This transition is crucial for delin-
eating the semantic significance of diverse data in the temporal
domain [27]. Addressing the stochastic nature of environ-
ments, various Aol-based sampling and scheduling algorithms
have been explored across different scenarios. These include
optimization for time-average age-based sampling [5], peak-
age-based sensing [28], and age-threshold-based access [14].
Despite these efforts, Aol alone may not sufficiently address
task-specific requirements [29].

The aforementioned algorithms, being data-content-
agnostic, run the risk of redundantly transmitting
irrelevant data in certain scenarios [7]. In response to
this challenge, some studies have integrated data content
and task requirements into a novel metric for Aol, termed
Value of Information (Vol). Vol is conceptualized as a
non-linear function of Aol, taking different forms for distinct
communication systems. For systems ensuring real-time
updates at the receiver regarding the source’s status, Vol
corresponds to the age of incorrect information [15]. In a
pull-based system reliant on query-driven communication,
Vol is specified as the age of information at the query [16].
Additionally, for systems incorporating wireless power
transfer, where the receiver must act upon the received status,
Vol is adapted to represent the age of actuation [17].

Nonetheless, existing research has overlooked the seman-
tic information embedded in source data. Particularly in
monitoring scenarios, visual data often contains redundant
information. Consequently, there is a compelling need for an
integrated approach that combines semantic extraction and
sampling.

C. Prompt Extraction Based SemCom

Recently, the emergence of GAI presents a promising oppor-
tunity to revolutionize the SemCom framework. The focus has
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TABLE II
COMPARISON OF MAINSTREAM SEMCOM AND PROPOSED SEMCOM FRAMEWORKS

DL-based SemCom

Aol/Vol guided SemCom

GAI-based SemCom

Achieved Capabilities:

¢ Semantic extraction & Inference
Advantages:

¢ Enhancement on the robustness for short range
wireless transmission

Limitations: .
¢ Non-explainability

¢ Error floor in DL

¢ Short-range communication without relays
Representative Refs: [4], [10]-[13]

¢ Semantic Sampling
Advantages:

Limitations:

Achieved Capabilities:

* Low semantic extraction complexity and latency

Consideration of semantic importance solely
from the temporal domain
* Lack of semantic recovery process
* Potential semantic information loss
Representative Refs: [T], [14]-[17]

Achieved Capabilities

* Semantic Extraction & Generation
Advantages:

¢ High quality of generated data

* Low compression rate via cross-modality

* Decoupled paradigm for flexible deployment
Limitations:

* No consideration of redundancy in time domain
* Lack of awareness of decision-making
Representative Refs: [18]-[22]

Proposed Agent-Driven Generative SemCom

Achieved Capabilities:

¢ Joint Semantic Extraction and Sampling & Inference and Interpolation

Advantages: « Efficient semantic compression applied to both each individual data unit and the temporal correlation
* Adaptive semantic extraction and sampling in response to changes in the channel gain and source content
¢ Seamless integration with existing mature digital transmission for achieving remote communication
Limitations: ¢ Only applicable to scenarios where the transmitted content is regular and predictable
.

Periodic fine-tuning is required to adapt to changes in the communication context

shifted from enhancing the efficiency of semantic encoding to
the extraction of precise prompts. In this paradigm, the shared
knowledge base (KB) of both communication participants can
be more effectively leveraged [30]. Unlike the DeepJSCC
paradigm, where KB only contributes to the training process
of the semantic encoder and decoder, the generative SemCom
paradigm allows background information to play a crucial role
in semantic inference during each communication instance.
This capability helps reduce the volume of information that
needs to be transmitted.

Pioneering efforts in Generative SemCom have explored
applications in language-oriented communication [18], image
transmission [19], [20], [21], and audio transmission [22].
These endeavors have demonstrated high-quality reconstructed
data and the fidelity of semantic information. However, the full
potential of GAI for SemCom remains largely unexplored. The
explainability allows the independent design and fine-tuning of
transceivers. This, in turn, facilitates the seamless integration
of new functional modules into the modular system. Moreover,
it removes the need for channel modeling during model train-
ing. It can further leverage existing source coding technologies
and integrate with current digital transmission networks to
address complex and diverse network environments.

III. SYSTEM MODEL AND OVERVIEW

Without loss of generality, our focus centers on a common
remote surveillance scenario in intelligent transportation sys-
tems.> The source in the considered scenario is an embedded
vision sensor characterized by limited memory and com-
putational capabilities, which is responsible for monitoring
a certain scene, and updating the destination on the scene
changes in a timely manner. The destination is a remote
server with predictable characteristics, which is tasked with
reconstructing the remote real-time scene, with the objective
of presenting users with the illusion of real-time transmission.
We assume that SemCom technology is deployed within the

3 An example of OneMotoring by Land Transport Authority can be found
at  https://onemotoring.lta.gov.sg/content/onemotoring/home/driving/traffic_
information/traffic-smart.html

system. The system model is specifically described from the
following three aspects.

A. Shared Knowledge Base Model for SemCom

The shared KB is introduced as a pivotal component in
SemCom systems, providing prior side information to enhance
semantic encoding [30]. Unlike traditional DL-based SemCom
approaches that non-selectively incorporate all KB into the
empirical dataset for end-to-end training, the proposed gener-
ative SemCom framework strategically analyzes KB to unlock
its full potential in boosting SemCom performance.

In the specific context considered, it can be universally
agreed that the destination is solely concerned with the vehic-
ular traffic on the road. In this sense, by utilizing shared
historical surveillance data, both sources and the destination
can simplify and standardize mutually agreed-upon the essen-
tial semantic representations, including vehicle location, type,
and driving direction. Meanwhile, since the static background
information of the monitoring scene, e.g., the view layout,
as well as dynamic changes involving irrelevant pedestrians
and non-motorized vehicles along the roadside, are of no
interest to the destination, they can be disregarded by the
source before transmission and then reconstructed at the desti-
nation based on the historically shared knowledge base, despite
potential slight differences. Based on the guidance provided
by the analysis of KB for specific tasks as described above,
we embark on the customized design of the SemCom system.

B. Semantic Processing Model for Source and Destination

Based on the task-specific KB analysis, to compress the
data for transmission, a semantic extraction module is utilized
to extract information on vehicular traffic in the monitoring
scene. The destination requires a semantic inference module,
which reconstructs the remote monitoring scene solely from
the updated traffic information. Naturally, such scene recon-
struction depends on shared KB. In other words, the shared KB
within this framework acts as a bridge between the source and
destination, decoupling the design of the encoder and decoder.

In addition, considering the communication objectives of
the surveillance task, the destination is more interested in
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changes in the remote scene, specifically in traffic flow rather
than in background information. In this sense, performing
appropriate sampling can further reduce the amount of data to
be transmitted from the temporal dimension. Thus, we incor-
porate a semantic sampling agent at the source to perform a
binary 0-1 action—deciding whether to transmit the current
semantic information or not, with the consideration of the
semantic changes in the monitoring scene and other factors.
Additionally, we integrate a predictive frame interpolation
module at the destination, enabling the illusion of real-time
transmission to users, while also potentially reducing the
number of required sampling instances. The specific designs
of the involved modules related to the semantic extraction and
semantic sampling are detailed in Section IV and Section V.

C. Wireless Transmission Model

In this work, we believe that wireless transmission is a
bottleneck in the communication process. As such, we mainly
analyze and evaluate the wireless transmission performance.
Considering the combined effects of multi-path and shadowing
on the practical transmission, we adopt the F composite fading
model to characterize the stochastic wireless channel [9].
We denote the instantaneous channel gain by g. The prob-
ability density function of g is given by [9]

™ (m, — 1) g

B (m,mg) [mg + (my — 1) g]™™™’

f(9) = (1

where m and m represent the number of clusters of multipath,
shadowing shape, respectively, and g is the corresponding
average channel gain, i.e., § = E [g]. Moreover, B (-, -) denotes
the beta function [9]. Since we focus on the design of the
semantic encoder and decoder, without loss of generality,
we assume perfect capacity achieving coding in this work.
Moreover, in order to cope with stochastic fading, it is assumed

that the transmitter of the embedded vision sensor adopts a
power control technique. We denote the decoding threshold

static scenes

Semantic Decoder
driving direction ’
. e forward * backward —

An agent-driven generative semantic communication framework with cross-modality and prediction.

Received
semantic information

Vehicle type
car:1

others: 4

Implicit mapping of
direction a,nyyout

Bounding box

Prompt required
for decoders

Fig. 2. Transformation from semantic information to prompt.

for the signal-to-noise ratio by ©. Thus, the achievable trans-
mission rate is expressed by

R=Wlog(1+0), )

where W is the allocated bandwidth. The instantaneous trans-
mit power is then given by p = ©0?/§j, where o2 represents
noise power.

IV. KEY COMPONENT DESIGN: SEMANTIC EXTRACTION

In this section, we focus on semantic extraction, a key
aspect of SemCom. Within the proposed framework, semantic
extraction and inference are achieved through a YOLO-based
semantic extraction module and generative semantic inference
modules, respectively.

A. Semantic Extraction Module

Based on the strategic analysis on the shared KB as stated
in Section III-A, we can see that the destination is mainly
concerned with the information about the distribution of
the traffic flow. To track the vehicles’ information in real
time, the semantic extraction can be performed based on a
mature real-time object detection algorithm, such as the low-
complexity YOLOvS5 [31] which can be deployed in multiple
embedded and mobile devices. Furthermore, we characterize
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the semantic information about the position for vehicle v
as the bounding box, which is denoted by a 4-tuple b, =
by, 03,05, b%) € [0, 1*. Therein, (b¥,bY) represents the
coordinate of the top-left corner, and (b%,b}) represents the
coordinate of the bottom-right corner. Given that for a two-
way road, the driving directions of the vehicles are tightly
coupled with their locations, we do not consider the semantic
information of the vehicle direction, separately. To avoid the
ambiguous semantic information of the bounding box arising
from the perspective effect of the position of the vehicle and
the size of the vehicle type itself, we use a scalar to represent
the type of vehicle, denoted by o, € O ={1,...,k,..., K},
where K represents the total number of the vehicle types.
In summary, a piece of semantic information for a vehicle
v in the monitoring scene can be represented by a vector
Sy = [0y, by], the data size of which after text data encoding
is denoted by £.* Assuming a total of M vehicles in the scene,
the total semantic information contained in the scene can be
represented as s = [s1,...,8y,...,S)|. Before transmission,
the semantic information is packed into a packet with the
data size of L. = M. If there are no vehicles in the
monitored scene, an empty semantic message will be sent
to the receiving side. Transforming the originally captured
scene images into textual layout information can significantly
enhance the compression ratio at the source side. For a relevant
quantitative comparison with other representative SemCom
paradigms, please refer to our prior research [32].

B. Semantic Inference Module

Given the requirement for photorealistic scene reconstruc-
tion, we utilize the diffusion model as the foundational
element of our semantic inference module design. However,
multimodal fusion of the textual prompts and image features
during the diffusion process presents a significant challenge.
In existing layout diffusion models, issues such as object
omission can occur when the number of objects is excessively
large or their size is too small [35]. This mainly arises from the
absence of structured spatial information in the textual layout.

To address this, we do not directly use the received textual
semantic information as the prompt for scene reconstruction.
Instead, we first visualize the textual information based on
knowledge base as shown in Fig. 2, thereby alleviating the
burden of the cross-modal fusion in the diffusion model.
Through target area mapping, the position and size of the
vehicles can be easily fused with the positional information of
each feature map during the diffusion process. This not only
addresses the challenge of multimodal fusion between text and
images in existing layout diffusion research but also removes
the limitation of the existing layout diffusion models on the
maximum number of objects. Additionally, to differentiate the
specific categories of objects, we paint the areas corresponding
to different vehicles with resolution values. Meanwhile, for
synthesizing a seamless and realistic scene, we also use the
static scene information of the remote scene as a prompt for

4We have total vehicle types K = 4, and use two bits to characterize oy,
and use five bits to characterize 7 ; , Y5 . max> and yb . respectively,

with a resolution of 0.03125. Thus, we have £ = (2 +4 x 5) bit.
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the diffusion model, which is denoted by r. It should be noted
that the static scene information does not need to be updated
in real-time to the destination, unless there are changes in the
weather or times of day. This is because the dynamics in the
background of exclusion zones are not of concern.

The diffusion model itself is a latent variable model,
which consists of a forward and a reverse process.
We denote the noisy data at denoising step n by x,.
The forward process is defined as a discrete Markov chain
of length N: g (x1.n5 |%0) nglq(xn |xn—1). In each
step n € [1,N] in the forward process, the diffusion
model adds noise €, sampled from the standard Gaussian
distribution A (0,I) to data x,_; and obtains disturbed
data x,, from q(x, |[X,—1) = N(Xn;\/l —6nxn,1,ﬁnl),
where (3,,n € [1,N] characterizes the scale of added
noise at each step n. Notably, during the training
process, we can sample X, at any step n in closed

form via ¢ (Xn |XO) = N(Xn; v GnXo, (1 - an) 1)7
with @, := [[,_,(1—p3). Moreover, given the

prompts S and r feed into the diffusion model, the
reverse process can also be defined as a Markov chain:
-~ N -~
po (Xo:v |S, 1) = p(xn)[,—1 Po (Xn—1|%Xn,8,1),
where  pg (X,—1|Xn,8,r) can be parameterized as
N (xp; pg (Xn,n),00),  Where  pg (Xp_1|Xpn,S,r) is
parameterized as N (Xp; po (Xn,S,r,n,),0,). By modeling
and comparing the posterior distribution of the forward
process, the mean term can be further rearranged as

o (Xn,8,r,n,) = %ﬁn (xn — \/167"7&"69
the variance term can be approximated as o,, = 3,1 without
sacrificing performance. Furthermore, €y is parameterized by
a U-Net network (as shown in Fig. 3) of which inputs are
Xn, S, r, and n. In light of above, the simplified loss function

guiding the training can be expressed as

,Cg - En,xn, [He — €9 (@xn + mt:ﬂg’ r, n]) H2} :
3)

Then, during the inference process, samples are generated by
iterating through the reverse process pg (Xo.n |S,r) from n =
N to n = 0. Specifically, xy ~ A (0,I), and x,, in each step
is predicted as

< :; % Bn
n—1 m n

(xn, 8,1, n)) and

where z ~ N (0,1).°

V. KEY COMPONENT DESIGN: SEMANTIC SAMPLING

This section shifts focus to semantic sampling, aiming to
streamline transmission in the femporal domain, particularly
like real-time operations such as surveillance. To achieve this,
we place a RL-based semantic sampling agent at the source
side to solve the sequential decision problem. To ensure that
the sampling behavior is unnoticeable to the destination, a
predictive frame interpolation module must be pre-installed
on the destination side. When the agent and the module work

5The detailed derivation and proof can be found in [36].
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Fig. 3. U-Net neural network for noise prediction [33], [34].

in harmony, the SemCom system’s performance evaluation
will align with the underlying SemCom framework given in
Section IV. We next begin with the design of the semantic

sampling agent, followed by a detailed illustration of the
involved predictive frame interpolation module.

A. K-SAC Semantic Sampling Agent

The semantic sampling agent is responsible for adaptively
performing semantic sampling based on varying channel
conditions and source data content, with the objective of mini-
mizing the amount of transmitted data while ensuring optimal
performance in SemCom. Although the RL paradigm can
address the challenge of the intricate correlation between the
state and the reward, an issue remains. Prior simulations reveal
that prediction deviation and sampling interval are not strictly
linearly related due to the influence of object size and object
moving speed. To mitigate the ambiguity that the nonlinearity
creates for the agent’s learning, we adopt a stochastic learning
policy named soft actor-critic (SAC), making it robust to such
occasional nonlinearities. Additionally, to avoid the impact
of convergence latency on communication performance and
the communication overhead resulting from immediate reward
feedback from the destination to the source, we integrate
knowledge into the SAC algorithm [37]. By modeling wire-
less transmission using the acknowledged empirical channel
model, F composite fading model, virtual experiences can be
generated to facilitate offline training. Thus, we refer to our
algorithm as K-SAC, and its MDP model is detailed as below.

1) MDP Model: Specifically, the time step in RL frame-
work is specified as a sensing time interval (STI). The duration
of STI is determined by the supportable frame rates for
vision sensors and the inference time of the diffusion-based
generation module, and each STI is indexed by ¢. As shown
in Fig. 4, the entire SemCom process can be viewed as the
environment. The semantic sampling agent corresponds to the
agent in an MDP, which interacts with the environment by
performing sampling actions. The goal of the agent is to
achieve the finest cumulative reward 7 within the observation
window (denoted by W) with a duration of 7. Denote the

immediate reward by r,. We define 7 E [Z;‘F:O ot -rt},
where v is the discount factor. Since we aim to achieve
consistently high scene reconstruction accuracy, =y is set to 1.

Attention

The interactions between the agent and the knowledge-based
virtual environment are presented as below.

a) State: The state observed by the agent at time step ¢ is
denoted as S;, encompassing four critical factors: specifically,
S: = [L+, X4, §t). Herein, L, characterizes the current data size
of the semantic information packet as defined in Section IV-A.
Furthermore, x; = [x¢, X¢t—1,---,Xt—w] conveys historical
insights into the semantic change degree in the past W STIs,
facilitating the agent to capture the urgency associated with
the sampling process. In the considered task, We denote the
timestamp corresponding to the last sampled scene by f.
Then, the semantic change degree is measured based on the
cumulative deviation of bounding boxes for each vehicle in
the current scene compared to the last sampled scene, while
irrelevant information, such as time of day and weather, can
be ignored. Specifically, y: can be calculated according to
semantic information s; and s; as

M A
A?u + Af) — 21’0
Xp =Y )
v=1 2(Av + Av - Iv)
where I, = |min{b3", bg’f}A max{b}"", b’l”i}|
|min{6y,05"}  — max{[py*, b5} and  AY =

b5 — by |-|bY" —byt|. At last, G, denotes the average channel
gain in time step ¢, which can provide a basis for the agent
to assess the energy consumption attributed to the sampling
operation. The agent perceives the state of environment
and uses the information to make the decision as presented
as below. Afterward, state S; transitions to the next state,
St41 = [Lt+1,X¢41:Ge+1], based on the executed action.
Specifically, the agent’s actions primarily affect the state
element X;41 in X¢y+1. Both L;4; and gy are equivalent
to the parameters of the MDP and are directly determined
by the size of the semantic information of the source data
and the channel conditions at STI ¢ 4 1, independent of the
action outcome. It is essential to emphasize that, in this work,
we assume that the source is stationary. In cases involving
moving sensors, the state should encompass the historical
channel variations to capture the influence of user mobility
on transmission energy consumption.

b) Action: The action performed by the semantic sam-
pling agent at the beginning of time step ¢ can be expressed
by a; € A =1{0,1}. If a; = 1, semantic sampling takes place

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 14,2025 at 01:16:36 UTC from IEEE Xplore. Restrictions apply.



2240

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 24, NO. 3, MARCH 2025

Algorithm 1 K-SAC-Based Agent-Driven Semantic Sampling Algorithm

1 Initialize reply memory D; Initialize weights of actor network and critic networks

2 for episode j = 1 to MAX_EPISODE do

3 Create a buffer f; for recording the visual layout sequence at the destination

4 Predict the next P visual layouts and create a list of variable length denoted by §' = [§],85,...,5p]

5 Calculate semantic change degree x: based on s; and s;

6 Randomly initialize the initial state S

7 for t =1 to T (MAX_STEP) do

8 if §’ is non-empty then

9 | Pop up the predicted visual layout & from the head of the list &’

10 else

11 \ Perform next loop visual layout prediction based on previously popped up visual layouts §;_; and §;_,
12 end

13 Generate an action a; based on the probability distribution output by the current policy 7+

14 if Perform semantic sampling (a; = 1) then

15 Transform semantic information s; into visual layout §; and store the real visual layout S; in to f;
16 Perform the prediction for the next P visual layouts based on §; and last sampled §; and update list §’
17 Estimate the energy consumption E; according to (8)

18 else

19 Store the predicted visual layout §; in to f;

20 Compare the deviation D; between §; and §, according to (11)

21 end

22 Calculate reward r; according to (6) and S;41 < S;; Record transition e; = [S¢, a¢, S¢41,7] in D

23 Sample a batch of B to perform a gradient descent according to (16), (17), and (18)

24 Update the parameters following: 6 < 0 — A9V Lq (0); ¢ «— ¢ — AgVLr (¢); 0 — 9 — Ay VL (9)

25 end

26 end

within STI ¢. Meanwhile, the timestamp corresponding to the
last sampled scene is updated as ¢ « ¢, which intervenes in the
state transitions as stated above. Otherwise, semantic sampling
is not carried out.
¢) Reward: The reward acquired by the agent at the end
of STI ¢ is denoted by r,. In the pursuit of highly efficient
remote surveillance, the immediate reward is considered with
regard to two key factors. The first factor pertains to the pre-
cision of the reconstructed scene measured inversely through
the prediction deviation D, between the real-time visual layout
§; and the predicted visual layout §}. Note that the prediction
method is detailed in Section V-B. The second factor relates to
the energy consumption F, incurred during the transmission
of the sampled semantic map. With both factors in mind, two
sub-reward functions are designed: one for scenarios where
semantic sampling is performed, denoted by 7/, and the other
for scenarios without semantic sampling, denoted by 9. Then,
the immediate reward function can be expressed as follows:
re=111g,—1 + 10 (1 —14,—1). (6)
It is worth noting that, in the conventional RL paradigm,
the reward is obtained through the agent’s interaction with
the actual environment. However, in K-SAC, to reduce com-
munication overhead, we model the interaction between the
agent and the environment based on existing channel model-
ing and mathematical analysis, generating virtual experiences
(S¢,a¢, 7, S¢41) that can be used for agent training. The
specific forms and design of 7} and ¢ are as follows:
Firstly, to minimize unnecessary sampling, we define the
sub-reward 7} for the action of sampling as a function
inversely proportional to energy consumption. Considering
that the energy consumption per transmission typically ranges

K-SAC-base Semantic Sampling Agent

Virtual mini
g Experience S rer

Buffer

L, ——
sI tic Ch: . W
emantic ange i ionss Average
Detection Fiistory|ction: ChannelgGain

Action
I

Loss
Calculation

)

Knowledge-based Virtual
Environment

Semantic
Sampling

Semantic
Inference

= Semantic
# ' Extraction

Fig. 4. K-SAC based semantic sampling agent design.

around 0.015 mJ, we introduce a weight parameter w; to
adjust its influence on the sub-reward by one order of mag-
nitude. This ensures that the scaled values are primarily
distributed between O and 1. Afterwards, given the val-
ues of E; with significantly less variance compared to Dy,
we employ a logarithmic function to further accentuate the
variations between different levels of energy consumption.
Meanwhile, this logarithmic transformation helps to prevent
potential excessive energy consumption caused by random
fading, thus mitigating its impact on the stability of agent
learning. Additionally, to maintain a balance between the
energy consumption and prediction deviation terms in the final
reward function, we incorporate another weighting coefficient,
wa, for the logarithmic component. The specific expression for
the sub-reward rtl is presented as follows,

7“,51 = wslog (1 4+ w1 E}), @)

where we choose w; = 10 and wy = —6. Moreover, E; is
a function of state elements L, and g;. Instead of interacting
with the real environment, we derive the value of F; based
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on the well-accepted F composite fading model as stated in
Section III-C. Given that the transmitter adopts the power
control technique, the transmission duration for semantic map
m; can be expressed by §; = L;/R. Therefore, we have

where k is the index of the transmission time interval. Without
loss of generality, we assume that the stochastic fading can
be treated as independently and identically distributed (i.i.d.)
among transmission time intervals. Then, E; can be approxi-
mated as
_ * Q02
Et = (StEg [p] = / —
0 g
—s00* [ 57 (5)ds
0
= (5t60'2]E I:g_l:l . (8)

According to (1), with the aid of [38, Eq. (3.194.3)], the nth

moment of ¢ can be derived as

(m, — 1)"g"T (m +n) T (m, — n)
m"T (m) T (my) ’

where T'(-) represents the gamma function. Substituting the

case of n = —1 in (9) into (8), we can obtain the final

expression of E; as

f(9)dg

E["] =

©))

Oc?mI (m —1)T (mg + 1)
(ms —1) gL' (m) " (my)
Secondly, in designing r?, to ensure high semantic accuracy

for scene reconstruction while promoting the energy-saving
awareness of the agent, we introduce a positive constant
term, ws, for non-sampling behavior. The value of ws is
determined based on the average energy consumption and
the system’s emphasis on E; and D;. Furthermore, D; is
calculated similarly to (5). We denote the total number of the
pixels occupied by each type of vehicles in §; and §'; by n, ¢
and n;Vt, respectively. Meanwhile, the intersection between
them is denoted by 7, ¢. Then, D; can be expressed by

Ey =6, (10)

M

’ N

D, — Z Nyt + Nyt — 2n’u,t

t — 7 .
=1 2 (n”vt + nv-,t)

Given the fact that larger deviations result in increasingly
severe consequences, we incorporate an exponential function
into this sub-reward formulation. Furthermore, to proactively
address the issue of significant cumulative prediction deviation
resulting from prolonged reliance on destination-side predic-
tions, we define D, using a penalty function as below,

th{ _ Dy -Dthth.
min{D; + x,1} Dy > Dy,
This is relative to the actual deviation D, considering that the
tolerable prediction deviation is capped by a threshold, Dyy,.
Moreover, we introduce a weight coefficient wy for ﬁt, the
value of which is chosen in conjunction with the value of ws.
Thus, the expression of r is presented as

(1)

12)

7",? = w3 — exp (w4f)t — 1) , (13)

where we set wz = 1, wy = 2, Dy, = 0.07, and x = 0.5.
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The careful selection of aforementioned weight coeffi-
cients collectively guarantees the rationality of rewards and
punishments. This mitigates the agent’s inclination towards
short-term gains due to insufficient sampling. Simultaneously,
it also prevents hesitation in performing a necessary sampling
given the potential penalties associated with sampling.

d) Policy: The policy (denoted by ) describes the
mapping from a given state to the agent’s action selec-
tion, which can achieve the maximum long-term rewards.
At the beginning of Section V-A, we choose a stochastic
policy, named K-SAC, where the agent selects an action
based on the action distribution generated by the policy’s
output, 7 (S;). It is important to note again that K-SAC is
an enhancement of the SAC algorithm, specifically designed
for an offline RL paradigm. By leveraging existing channel
modeling research and mathematical analysis to model the
wireless transmission process as discussed above, we can
generate virtual experiences based on practical history footage
clips, such as the relationships 7, and Sty;, and S¢ and
a;. These virtual experiences are used for offline pre-training
and fine-tuning, followed by periodically updating to the
sender’s semantic sampling module. This not only reduces
the communication overhead during training but also avoids
impacting actual communication performance during the
convergence process. The learning principle is detailed in
Section V-A.2.

2) Learning Principle: Based on the MDP designed above,
we present the learning part of SAC. For illustration, we denote
the state-action trajectory under the policy m by pr. In the
traditional RL algorithm, the fundamental objective of agent is
to learn the optimal policy m which maximizes the cumulative
expected rewards, which is expressed by

™ = arg max Zt E(s;,a:)~px [T (St at)], (14)

where 7* represents the optimal policy. Differently, in SAC,
to facilitate the agent to achieve the optimal goals, SAC
dynamically optimizes the expected entropy of the policy
over p, during the learning process to flexibly handle the
exploitation and exploration dilemma. Thus, the aim of agent
can be reformulated as

T
J (1) =Y E(s,a0)mpy 1 (Stya) + 9H (w (-]S4))],  (15)
t=0

where ¢ is a temperature parameter which determines the
relative importance of entropy relative to the long-term
reward, and H (7 (- |S;)) is the entropy, i.e., H (7 (-|S;)) =
—log,. (-|S¢). In addition, SAC follows the classic actor-critic
architecture and experience replay mechanism [39], [40]. The
policy my (a;|S;) is generated by the actor network with
parameter ¢. Meanwhile, to enhance the stability of learning,
twin critic networks with the same initial parameter 6 are
maintained to avoid overestimation of the soft Q-function
Qo (S¢, ar), which is the cumulative expected rewards after
taking the action a; at the state S; under the policy 7.
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According to the Bellman equation of the soft Q function,
the loss function for the critic network can be expressed by

1
Lq (¢) =Es,a)~8 {2 (Qy (Styar) — (r (Se, ar)

—~

2
+ Q4 (St41,at11) —logmg (a1 |St+1))> ] ,
(16)

where 5 represents the replay memory for improving sampling
efficiency, and ¢ is the parameter of the target network with
soft update, ie., ¢ «— 7o + (1 —7)@p with 7 € (0,1).
Moreover, to maximize the Q value, the loss function for the
training of the actor network can be expressed by

Ly (¢) = Es, 8 [Ea,~r, [010g (74 (ar [St)) — Qo (St ar)]] -
)

In addition, the adjustment of the temperature parameter can
be realized according to the following loss function

L (’19) = Eat,\,ﬂ—t [—19,5 IOgﬂ't (at |St) — ’L9t7:{] 5

where H = —| Al

We should again highlight that the training and implemen-
tation of K-SAC algorithm is separated. Firstly, an off-line
training method is adopted based on virtual experiences for
safeguarding and reducing communication overhead [40], [41].
Then, the well-trained model is implemented in real-world
scenarios. The optimality, robustness, and learning efficiency
are discussed in Section VI. Since the predictive frame interpo-
lation at the destination also serves as part of the environment,
the entire agent-driven semantic sampling algorithm is outlined
in Algorithm 1 after the following elaboration of predictive
frame interpolation module.

(18)

B. Predictive Frame Interpolation Module

The predictive frame interpolation module at the destination
plays a crucial role in generating the illusion of real-time
updates. When the source does not perform semantic sam-
pling or update semantic information s to the destination,
the predictive frame interpolation module generates predicted
visual layout information §' and inputs it into the semantic
inference module for timely scene reconstruction. Essentially,
this module performs a task similar to video frame prediction
but in a much simpler manner.

Specifically, despite significant advancements in DL, the
task of video frame prediction continues to present chal-
lenges, such as image deblurring, particularly in the long-term
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prediction [42]. Fortunately, since visual layout exclusively
encompasses low-level features and eliminates irrelevant fea-
tures in the background, the issues caused by the loss of details
can be significantly mitigated. Given that low-level features are
widely recognized as being readily captured by shallow neural
networks, we design a lightweight prediction network architec-
ture, as illustrated in Fig. 5. To avoid unnecessary difficulties
caused by different vehicle types during the prediction process,
the two past visual layouts are first separated into multiple
visual layouts, each containing only one type of vehicle.
These layouts are then fed into two ResBlocks with shared
parameters to extract features using the batching technique.
Simultaneously, given that the intervals for semantic sampling
exhibit variability, we also take the embedding of the temporal
discrepancy A; between the timestamps of two visual layouts
as the inputs, which is then amalgamated with both derived
feature maps corresponding to the two past visual layouts. The
fused feature is subsequently processed by another ResBlock
to predict the visual layout for each type of vehicles. Finally,
through a extraction and combination module, the visual layout
for a scene can be output and used as the prompts to generate
the remote scene, if required. To reduce the computational
overhead associated with frequent predictions, we set that the
module predicts next P visual layouts at once. In this sense,
a larger value of P means lower system complexity. However,
increasing P also raises the computational power requirement
at the destination and amplifies the impact of vehicle speed
variations on prediction accuracy, posing greater challenges to
maintaining prediction accuracy. Therefore, the selection of P
requires a trade-off between these factors.

To align with adaptive semantic sampling at the source,
the visual layout prediction mechanisms at the destination for
different cases are as follows.

Case 1: At the initial STI, the source continuously samples
and transmits the semantic information sg and s; correspond-
ing to the scenes within two consecutive STIs. Subsequently,
the semantic inference module first transforms semantic infor-
mation into the visual layout Sgg and Sp;. Then, the predictive
frame interpolation module predicts the next P visual layouts
§] ...8, based on §gpp and So;.

Case 2: In the following STI ¢, if no updated semantic
information is received and the visual layout for that moment
has already been predicted, the predictive frame interpolation
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SIMULATION PARAMETER SETTINGS ':“,;.‘;:.:‘ N p,edk.eﬂ;a:.;r
Wireless Network Parameter Settings
Small-scale fading model JF composite fading mode [9] ' ' ' . ' ' '
Pass loss (average channel gain) [dB] 35.3 + 37.6log, (d) [43] =6 B (-7
Fading severity m 6 Bandwidth W [kHz] 1
Wireless Distance d [m] 100 SNR threshold [dB] 15 . ' . . . ' ‘
Noise power [dBm/Hz] -90 Shadowing shape ms 6 (=4 W3 =7
Hyperparameters for Generative Semantic Inference Module
Learning rate 2e-5 | Batch size 1 ' ' ' ' ‘ ‘ '
Denoising step [N 1000 | Guidance scale k 8 t=2 [8=8 (=7
Hyperparameters for Predictive Frame Interpolation Module . . . . - ' '
Learning rate [ 2e-5 [ Batch size 5
Hyperparameters for K-SAC based Semantic Sampling Agent =4 B =T
Memory Capacity le5 | Batch size 1024 Fig. 7. Visual results for visual layout prediction.
Learning rate for policy network | le-5 | Soft Update 0.2
Learning rate for critic network | 2e-5 | Observation window 150
Learning rate for temperature parameter | le-5 and others to 1, 2, 3, and 4, respectively. Moreover, during

module feeds §} directly to semantic inference module. Con-
versely, if §} falls outside the scope of the previous prediction,
the prediction module uses §}_, §,_, and A; = 1 as the inputs
for the next round prediction. Notably, the latter scenario
indicates that the remote scene undergoes minimal changes,
ensuring that successive predictions do not result in much
cumulative deviation.

Case 3: In the following STI ¢, if new layout information
s; is received at the destination, the prediction module first
compares the visual layout s, transformed from s, with the
predicted visual layout §;. If the prediction deviation D;
falls below a predetermined threshold, the prediction module
promptly conducts the next round of prediction based on the
updated S; and the last sampled S;. This approach minimizes
the spread of prediction deviations. In contrast, if D,, exceeds
the preset threshold, it indicates a sudden change in the remote
scene. In such a case, the source is informed to continue
performing the sampling at STI (¢t 4+ 1) and initiate a new
prediction process at the destination.

It is important to note that the above mechanisms need
to be integrated into the dynamics of the environment that
semantic sampling agent interacts with. Furthermore, given
that the latter scenario in Case 3 is an extreme instance that can
serve as a starting point for a new episode, it is not treated as a
distinct entity in environmental modeling. The full realization
of the semantic sampling in the proposed SemCom framework
has been highlighted in Algorithm 1.

VI. SIMULATION
A. Simulation Setup

1) Datasets: We select typical bidirectional road traffic sce-
narios from UA-DETRAC dataset [8] to serve as the training
data for the generative semantic inference module, predictive
frame interpolation, as well as the semantic sampling agent.
Specifically, as this work excludes the optimization of the
object detection module, we directly use the information about
bounding box and the type of all vehicle objects recorded in
the Annotations as the extracted textual semantic information.
Moreover, when mapping the visual layout, we set the pixel
values corresponding to the four categories of car, bus, van,

the training, the image size is reshaped into (240, 160).
Meanwhile, for the wireless transmission parameter settings,
the detailed parameter settings can be found in Table III.

2) Network Design and Hyperparameters: For neural net-
work of the predictive frame interpolation module shown in
Fig. 5, the number of channels in each ResidualBlock is set
to 8, and the number of the channels in the output layer is
set to 5, i.e., P = 5. The dimension of the time embedding
is set to 32. For the generative semantic inference module
as shown in Fig. 3, it comprises a number of channels equal
to [64, 64, 128, 128, 256, 256, 512, and 512] and with a
linear variance schedule. Meanwhile, the dimension of the
time embedding is set to 256. Finally, we adopt the classifier-
free guidance [34] with the guidance scale of k¥ = 8. For
the K-SAC-based semantic sampling policy, both the policy
network and the two critic networks are designed with three
layers, with 300, 200, and 200, respectively. In addition, for all
the models, the Adam optimizer is adopted with betas =(0.9,
0.999). Moreover, more hyperparameters during the training
for each model have been summarized in Table III.

B. Performance Analysis

We first analyze the performance of each module sequen-
tially according to their operational order. Finally, we present
a comprehensive end-to-end performance analysis.

1) Predictive Frame Interpolation: The predicted visual
layouts with different sampling intervals are shown in Fig. 7.
Notably, during predictions with A; = 1 STI, A; = 3 STI, and
Ay = 5 STI, the positional consistency of objects is preserved.
This ensures the fidelity of semantic information between the
real-world scene and the generated scene. However, since the
module can only grasp the relative positions of the objects in
the two layouts and the time differences based on the inputs,
the prediction relies on an implicit average driving speed.
As a result, due to the non-uniform speed, careful observation
of Fig. 7 reveals that there are some slight discrepancies
corresponding to different sampling time intervals. This can
be further confirmed by comparing the second and fourth
rows in Fig. 7, which use the same layouts for prediction but
different sampling intervals. Meanwhile, this observation also
confirms the validity of the prediction module. In addition,
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Fig. 8. Learning performance for K-SAC agents with random initial scene with different traffic pattern in terms of cumulative reward, total energy consumption,

average prediction deviation, and total semantic sampling count.

as shown in Fig. 7, the contours of the later predicted frames
become increasingly blurry, which may also interfere with
the evaluation of semantic accuracy. In this sense, even if
computational power permits, the value of P should not be
too large. Therefore, considering both semantic accuracy and
the complexity of frequent predictions, we select P = 5 based
on experimental results.

2) K-SAC Based Semantic Sampling: To enhance the
robustness and adaptability of the algorithm, we select
500 frames of continuous surveillance scenes as the training
environment. These frames include scenarios with varying
vehicle types, vehicle counts, vehicle speeds, and changes in
vehicle speeds. Specifically, the real-world semantic informa-
tion is transformed into visual layouts based on the annotations
from UA-DETRAC XML files. The visual layout prediction
utilizes the model trained in Section VI-B.1. The convergence
of the algorithm is illustrated in Fig. 8, where an episode refers
to an observation window.

It is important to note that during the training process,
the initial state (the scene with different traffic pattern) is
randomly regenerated every 20 episodes. This differs from
the majority of current RL training methodologies, which use
the same or similar initial states across different episodes,
allowing the reward function to converge to a stable value
for each episode. In our training process, the episodes with
different initial states always encompass different observed
environments, where variations in the number of vehicles
and the vehicular speed inevitably affect the communication
system’s performance in terms of energy consumption and
prediction accuracy. Due to the inherent randomness of traffic
flow, it is neither feasible nor necessary to compensate for
its impact on performance through the design of the reward
function. Consequently, as expected, the cumulative reward
for different observation windows deviates after convergence
of the algorithm. Nevertheless, aside from the overall increase
in the cumulative reward function value indicating the con-
vergence of the algorithm, this stability of the cumulative
reward for the same observed environment, as locally mag-
nified in Fig. 8, also corroborates the convergence of the

algorithm. From Fig. 8, we can observe that during the initial
convergence phase, from episode 740 to episode 840, all
the performance metrics exhibit differences across the five
observation windows. However, there are still noticeable fluc-
tuations within each observation window. In contrast, during
the late convergence phase, from episode 2500 to episode
2600, the performance metrics within the different windows
have stabilized, with only minor variations attributable to
inherent randomness of the strategy. Moreover, by comparing
the locally magnified view of the total energy consumption
with the locally magnified view of the number of samples,
we can observe that fewer samples often correspond to higher
energy consumption. This reflects the agent’s energy-saving
awareness and adaptive capability.

Furthermore, the superiority of agent-assisted semantic sam-
pling compared to existing periodic sampling strategies has
been demonstrated in Fig. 9. Specifically, we consider periodic
sampling strategies with periods of 4, 5, 6, and 7 STI for three
footage clips with different initial moments.®. Firstly, from
the perspective of the comprehensive evaluation indicator,
cumulative reward, all sampling strategies exhibit varying
performances across different footage clips. Among them,
the agent-assisted sampling strategy, due to its robustness
and adaptability, achieved significantly superior performance
in all three footage clips. Additionally, there is no optimal
sampling period for the periodic sampling strategies because
of the dynamic changes in the environment. For example, the
periodic sampling strategy with a period of 7 STI achieved the
best performance among the four periodic sampling strategies
in Clip 1, whereas in Clip 2, its performance was the worst,
resulting in negative values. The reason for this can be under-
stood by comparing the subsequent three subplots. Although
the periodic sampling strategy has the same sampling counts
in different footage clips, it achieves the lowest energy con-
sumption in Clip 1. This implies that the smaller number of
vehicles in Clip 1 allows for more sampling with the same
energy consumption, further reducing prediction deviation and

%The videos about the three
https://youtu.be/pJZzDnNspAc

footage clips can be found at
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Fig. 10. Visual results for generative semantic inference.

improving overall performance. The agent-assisted sampling
strategy exactly achieves this effectively. In Clip 2, the predic-
tion deviation of the periodic sampling strategy with a period
of 7 STI significantly increases compared to the strategies
with periods of 5 and 6 STI, suggesting that there may
be sudden changes in traffic flow within a certain sampling
interval. The agent-assisted sampling strategy addresses this
issue by increasing a few sampling amount with minimal
energy consumption, further demonstrating its robustness and
adaptability. From the overall perspective of Fig. 9, the average
sampling interval for the agent-assisted semantic sampling
is approximately between 5 STI and 6 STI for different
footage clips, which is close to the value of P. This is
because, although a corresponding prediction mechanism at
the destination side compensates for the semantic information
loss caused by sampling, as mentioned in Section VI-B.1, the
accumulation of prediction errors increases with longer pre-
diction interval. Especially when the next round of prediction
is based on two consecutive predicted frames, this error is
further amplified.

3) Generative Semantic Inference: The visual results of the
generative semantic inference can be found in Fig. 10. Specif-
ically, the left side of the figure shows the specific denoising
process, and the right side shows more examples generated
under different references. By comparing the generated image
and the real image, it becomes evident that, while there exist
differences in the background details and coloration of the
vehicles, the positional alignment of the vehicles remains accu-
rate. This achievement signifies the system’s proficiency in
preserving essential semantic information. However, it should
be noted that if the boundary vehicle fails to be detected at the
source, the generated image at the destination will not contain
that information (as shown in Example @ in Fig. 10).

4) Overall Performance: Finally, we analyze the over-
all performance gain of the proposed A-GSC framework.
To demonstrate the superior performance in terms of energy

Reference

B
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Fig. Comparison of energy consumption.

efficiency, we conduct a comparison of the proposed A-GSC
between the existing generative SemComs (GSCs) with
semantic map and textual layout as prompt (denoted by GSC
(M) and GSC (L) respectively), as well as conventional com-
munications (CCs) with the source coding H.2657 and JPEG,
respectively. Although the advanced H.265 encodes only the
differences between blocks of pixels within a frame or between
consecutive frames, it treats all changes equally. Therefore, due
to the varying dynamics of objects and backgrounds, H.265
still requires 10 times more energy consumption compared
to GSC (M), as shown in Fig. 11. Furthermore, from the
comparison of GSC (L) and GSC (M), We can observe that
the introduction of image-to-text conversion is well worth
it in terms of improving energy efficiency, as it can reduce
the amount of transmitted data to approximately 1/30 of the
original. Moreover, comparing the energy consumption of
A-GSC and the existing GSC, the integration of semantic
sampling agent further reduces energy consumption to 1/5
from the temporal domain, compared to GSC (L). Consid-
ering the substantial differences in energy consumption across
different communication paradigms, log scale is adopted in
Fig. 11. Overall, as can be clearly seen from Fig. 11, the
proposed A-GSC reduces transmission energy consumption

7We employ FFmpeg, leveraging its integration with the 1ibx265 library for
H.265/HEVC encoding, and acquire the data size of each encoded frame.
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Fig. 13.

Limitations of proposed A-GSC.

by approximately 1,000 times compared to the current H.265-
based encoding.

After demonstrating the great potential for energy savings,
we evaluate the performance of scene reconstruction based
on multiple metrics. We compare our method with GSC (L)
periodic sampling at intervals of T=5 STI and T=6 STI, which
have shown better performance as depicted in Fig. 9, as well as
with conventional coding (CC) using H.265. Moreover, it is
noted that in the CC with H.265, we resize the frame into
(120, 80) before transmission. Then, during the reconstruction,
we resize it to (240, 160). This is consistent with the use of
the (120, 80) frame size in the visual layout prediction. The
visual video for the source data sensed at the source and the
reconstructed scene by multiple communication paradigms can
be found at https://youtu.be/9tNKqORQS8Y. From the video,
we can see that due to the stochastic nature of the inference
process, the color of the vehicles may change across different
scenes, and the brightness of the image also fluctuates a bit.
Both observations restrict GSCs’ performance in the evaluation
under the conventional metrics of MSE and PSNR, the SSIM,
but they are still at a satisfactory level as shown in Fig. 12.
In contrast, under the semantic metric Learned Perceptual
Image Patch Similarity (LPIPS) and Intersection over Union
(IoU) about the considered task, the proposed algorithm shows
its superiority. Compared to periodic sampling, the perfor-
mance of agent-assisted GSC improves by approximately 6%
and 4%. In addition, due to the photo-realistic generation
capability of the diffusion model and high compression rate
adopted in H.265, the GSCs’ performance is 2 times that of
conventional coding (CC) with H.265 under the LPIPS metric.
Overall, the above demonstrates that A-GSC framework can
also achieve fulfilling performance.

However, the framework currently has limitations. Fig. 13
highlights three potential unexpected issues. First, while the
accuracy of vehicle position changes can be maintained in a
video, the color of a vehicle may be altered. Second, for larger
objects such as buses, it is occasionally hard to determine
whether a single vehicle or two overlapping vehicles are
present. Third, with boundary objects, what should be rela-
tively large incomplete objects may sometimes be interpreted
as a smaller complete vehicle. Although these errors do not
affect semantic accuracy, further improvements are necessary.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 24, NO. 3, MARCH 2025

C. Complexity Analysis of Training and Deployment

In the proposed A-GSC framework, multiple trainable
modules are incorporated, including the semantic extraction
module, semantic sampling agent, predictive frame interpo-
lation module, and generative semantic inference module.
Nevertheless, this explainable modular design allows each
module to be trained independently, significantly reducing the
overall training complexity. Specifically, for the source end,
a well-trained object detection algorithm can be utilized as
a pre-trained model, which greatly mitigates the complex-
ity of training from scratch. Additionally, for the semantic
sampling agent, since it performs a binary decision task and
the state size is relatively small, the convergence rate is fast,
requiring only a few hundred episodes to reach a satisfactory
performance, as shown in Fig. 8). Moreover, due to the
small dimensions of the action and state spaces, the storage
space required for an experience replay buffer of 100,000
pieces of experience is only 8.5 MB. Therefore, it also has
minimal requirement for storage. On the destination side,
the visualized layout information primarily consists of low-
level features, significantly reducing both model design and
training complexity compared to existing video frame predic-
tion methods, with only 500 episodes needed. Furthermore,
for the generative semantic inference module, as this task
does not involve complex cross-modal feature alignment like
stable diffusion with text-based prompts, its model size and
training difficulty are greatly reduced compared to general
generative models such as stable diffusion, requiring only
400 episodes. Meanwhile, if this communication framework is
to be applied to other scenarios with richer and more complex
semantic information, well-trained models like ControlNet
can be employed as pre-trained models for further fine-
tuning. Overall, despite the increase in the number of modules
requiring training, the training complexity is much lower com-
pared to JSCC SemCom approaches based on Transformers,
which typically require millions or even tens of millions of
episodes [23].

Additionally, for the deployment process, a lightweight
YOLO object detection algorithm designed for mobile devices
can be used as the semantic extraction module. Further-
more, the semantic sampling agent, with a small-scale actor
network consisting of 0.102018 million parameters, requires
only 0.102656 million FLOPs per inference. Compared to
the lightweight and widely used YOLOX model [44], which
requires 1.08G FLOPs and 0.91 million parameters, we believe
that integrating the K-SAC agent into embedded devices is
feasible. Meanwhile, on the destination side, the long-term
frame prediction in the predictive frame interpolation module
has reduced the complexity of frequent predictions. For the
generative semantic inference module, due to its smaller model
size, the inference latency for a single denoising step is also
reduced. Furthermore, it is worth highlighting that advanced
diffusion models such as InstaFlow and DDIM have optimized
the inference process of classic DDPMs by reducing the
number of denoising steps, thereby lowering the inference
latency to 0.1 seconds and 1 second, respectively. This demon-
strates the potential feasibility of applying diffusion models in
surveillance systems.

Authorized licensed use limited to: Singapore University of Technology & Design. Downloaded on April 14,2025 at 01:16:36 UTC from IEEE Xplore. Restrictions apply.



YANG et al.: AGENT-DRIVEN GENERATIVE SEMANTIC COMMUNICATION WITH CROSS-MODALITY AND PREDICTION

VII. CONCLUSION

In this paper, we have focused on a remote surveillance
scenario. In contrast to the existing research efforts for
SemCom, which have focused solely on semantic extraction
or semantic sampling, we have seamlessly integrated both
together by introducing the GAI and an RL-based agent into
SemCom system design. Specifically, in the proposed A-
GSC framework, the semantic information has served as an
explainable prompt of textual layout information transmitted
to the semantic decoder while assisting in semantic sampling.
To consistently display the remote scene, we have integrated
prediction capabilities into the decoder design, to complement
the flexible semantic sampling at the semantic encoder. Our
simulations have demonstrated notable improvements in both
energy efficiency and reconstruction accuracy. In the future,
we will further extend the work to a multi-sensor scenario,
and aim to jointly optimize semantic compression as well as
semantic scheduling.
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